

Autokey Version 2 Specification

draft-sibold-autokey-02

Authors: Dr. D. Sibold – PTB, Stephen Röttger IETF 86, Orlando, USA, March 10-15, 2013

Scope:

Autokey V2 shall provide

- Authenticity of NTP servers
- Integrity of NTP data packets
- Conformity with the TICTOC Security Requirements
- Compatibility with the current NTP specification

History

- IETF 83 Presentation of security issues of RFC 5906 (autokey)
- IETF 84 Plan for a new autokey standard was presented
- IETF 85 00-version of draft (and preliminary 01-version)

Broadcast Mode

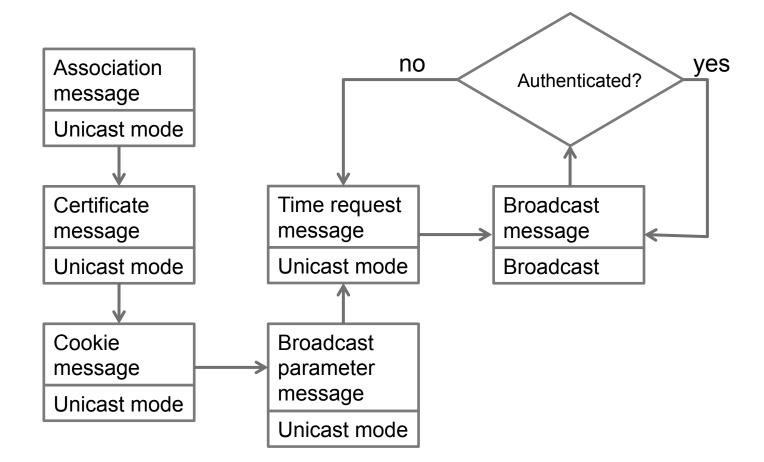
- Authentication and integrity check for NTP broadcast mode.
- Based on TESLA (Time Efficient Stream Loss-Tolerant Authentication), RFC 4082
- Unicast Modes (client-server, symmetric)
 - HMAC approach for the generation of the MAC
 - No need for pseudo random keys (autokeys)
- Revision of Appendix A
 - Verification against TICTOC Security Requirements draft 04

Authentication of the server

- Same procedure as in the unicast modes

Integrity protection

- The approach for the unicast modes fails in the broadcast mode
 - The generation of the MAC is based on a shared secret between client and server → this conflicts with the broadcast mode
- Asymmetric cryptography could solve this problem but conflicts with precise time synchronization requirements
- Suggested solution is based on TESLA (RFC4082)
 - TESLA uses symmetric cryptography
 - The required "asymmetric" property is introduced by time-delayed key disclosure
 - TESLA requires "loosely" time synchronization between sender and receivers



Protocol sketch

- Assumption: Broadcast client is time synchronized to the broadcast server
- The server computes a one-way key chain and associates each key to a time interval
- Packets are appended by a MAC calculated with the current key from the one-way key chain
- The client ensures that the packet was sent before the key for the MAC was disclosed; it buffers the packet for later authentication
- The server discloses a key after a pre-defined time delay by appending the key to a packet
- If a key is disclosed the client checks that the key belong to the key-chain and verifies the correctness of the MAC.

Broadcast Protocol Sequence

- A new name for the protocol (suggestions?)
- Awaiting for comments to the current state of the draft
- Acceptance as working group document