
TURN REST Server API

draft-uberti-behave-turn-rest-00

Justin Uberti, Google

1

Typical TURN Auth: Config

Client Password
DB

TURN
Server

WebRTC JavaScript code:
var iceServer = {
 uris: ["turn:turn.bar.com:3478?proto=udp"],
 username: foo
 credential: mysecret
};
var config = {
 iceServers: [iceServer]
};
var pc = new PeerConnection(config, null);

2

Typical TURN Auth: TURN Request

Client Password
DB

TURN
Server

ALLOCATE REQUEST

3

Typical TURN Auth: TURN Error Response

Client Password
DB

TURN
Server

ALLOCATE ERROR RESPONSE
ERROR-CODE: 401
(Unauthorized)
REALM: bar.com
NONCE: abcd1234

4

Typical TURN Auth: TURN Request (2)

Client Password
DB

TURN
Server

ALLOCATE REQUEST
USERNAME: foo
REALM: bar.com
NONCE: abcd1234
MESSAGE-INTEGRITY:
 HMAC(M, MD5(
 "foo:bar.com:mysecret"
)
)

5

Typical TURN Auth: HA1 Request

Client Password
DB

TURN
Server

Give me HA1:
user: foo

6

Typical TURN Auth: HA1 Response

Client Password
DB

TURN
Server

Here you go:
ha1: MD5("foo:bar.com:
mysecret")

7

Typical TURN Auth: Verify

Client Password
DB

TURN
Server

MESSAGE-INTEGRITY verify
against
HMAC(M, HA1)

8

Typical TURN Auth: TURN Response

Client Password
DB

TURN
Server

ALLOCATE RESPONSE
XOR-RELAYED-ADDRESS=<ip>
MESSAGE-INTEGRITY:
 HMAC(M, MD5(
 "foo:bar.com:mysecret"
)
)

9

The problems with the TURN long-term auth
exchange are documented in
draft-reddy-behave-turn-auth

● TURN password must be kept secret
(hard for WebRTC apps)

● TURN password vulnerable to offline dictionary
attacks on MESSAGE-INTEGRITY

● TURN server must consult a password database
to verify MESSAGE-INTEGRITY

● TURN username value is passed in the clear, can
be used for traffic analysis

Inherent Problems

10

Proposed Solution

Client makes a HTTP request to a web service to get
ephemeral (time-limited) credentials:

● No long-term credentials to keep secret; even if
discovered, credential usefulness is limited

● Username contains no externally-identifying
information

● Password is machine-generated, to prevent
dictionary attacks

● Response also includes location of TURN server,
avoiding complex SRV lookups

11

Credential Verification

While the TURN server could verify credentials
against the HTTP server, the draft suggests a
stateless design that requires no backchannel.

● Username is credential expiration timestamp +
any desired application data

● Password is HMAC(username, SS), where SS is a
shared secret key between HTTP and TURN
servers

● To get HA1, TURN server simply does
MD5(<username>:<realm>:<hmac>)

12

Stateless TURN Auth: HTTP Cred Request

Client HTTP
Server

GET /?service=turn

13

Stateless TURN Auth: HTTP Cred Response

Client HTTP
Server

200 OK
Content-Type: application/json

{
 username: "1375043478:abcd1234",
 password: <HMAC("1375043487:abcd1234", SS)>
 ttl: 86400,
 uris: [
 "turn:turn.bar.com:3478?proto=udp",
 "turn:turn.bar.com:3478?proto=tcp",
 "turns:turn.bar.com:443?proto=tcp"
]
}

14

Stateless TURN Auth: TURN Request (2)

Client TURN
Server

ALLOCATE REQUEST
USERNAME: 1375043478:abcd1234
REALM: bar.com
NONCE: abcd1234
MESSAGE-INTEGRITY:
 HMAC(M, MD5(
 "1375043478:abcd1234:bar.com:<hmac-password>"
)
)

15

Stateless TURN Auth: Verify

Client TURN
Server

1. Parse timestamp from USERNAME (1375043478)
2. Check that timestamp is in the future
3. Compute password:

HMAC(1375043478:abcd1234, SS)
4. Compute HA1: MD5(1375043478:abcd1234:bar.com:

<hmac-password>)
5. MESSAGE-INTEGRITY verify against

HMAC(M, HA1)
6. If it's cool, return success response
7. No communication with HTTP server needed!

16

● STUN defines a short-term credential
mechanism, but this mechanism doesn't support
nonces, opening the door for trivial replay
attacks

Why not Short Term Credentials?

17

Questions

● Adopt as WG draft?
● Propose generic HTTP mechanism + example

stateless implementation, or focus exclusively on
stateless design?

18

