DANE Best Current Practice

draft-dukhovni-dane-ops-01

Viktor Dukhovni & Wes Hardaker

IETF 87, Berlin July 2013 General DANE Guidelines (Type Independent)

Large DNS payload issues

- Issues with large UDP packets:
 - UDP fragments can not always be delivered
 - Provides a greater opportunity for amplification attacks
 - Doubling of TLSA RR size during X.509 key rollover
 - (and may not have been anticipated in initial testing)
- Conclusion:
 - Hashes are best (use "TLSA * * [12]")
 - Avoid publishing certificates directly (avoid "TLSA * 0 0")
 - Keys are better, but still big (try to avoid "TLSA * 1 0")
 - Test "TLSA * 1 0" RRs, thoroughly!
 - 2048-bit RSA key is 256 bytes, so 2 keys exceed 512 bytes
 - Be sure to enable DNS over TCP everywhere

Selector Matching Guidelines

- SHA256 vs SHA512:
 - SHA512 Optional for clients
 - No known security advantage to SHA512
 - Best current selector is SHA256
 - Servers should avoid publishing SHA512
 - Clients should support SHA512

Referral and CNAME Processing and TLSA Base Domain Preferences

CNAMEs

- The TLSA base domain should be the name sought in peer certificate
 - (when name checks are applicable).
- If a server has many aliases:
 - The server may need many certificates
 - SNI is needed to select the right one.
 - But SNI key management difficult in practice

CNAMEs

- Protocol design recommendation:
 - Start with primary server name
 - Chase CNAME RRs to obtain TLSA base domain
- If a protocol can't chase CNAMEs:
 - Operational guidance:
 - When server is a CNAME, also alias the TLSA RR

www.example.com. IN CNAME www.example.net.
_443._tcp.www.example.com. IN CNAME _443._tcp.www.example.net.

- Avoids the need to mirror data from the server
 - (A and TLSA records)
- Requires SNI at the server (unless using Type 3)

Type-Specific Guidelines

Type 3 Guidelines

- Usage 3 certificate is just an opaque public key container or reference
 - No external trust in the issuer for names, lifetimes, etc
 - No pre-configured trusted issuer needed
 - No expiration checks
 - (handled by the TLSA RRSIG expiration)
 - MUST ignore subject name checks
 - The TLSA base name = the name binding
 - Implementations hopefully won't check anyway

Type 3 Guidelines

- Least likely to fail validation of all certificate usages
 - provided DNS data correct
 - Best for KISS
- Operational Guidance:
 - DNS must be updated before the server key is updated
 - Servers SHOULD add matching subjectAltName DNS entries
 - For the base domains of all relevant TLSA RRs

Type 2 Guidelines

- Certificate usage 2 supports private-label TAs
- For Client Usage of TLSA 2 1 0:
 - Client may not have the TA certificate available
 - Current APIs make using a bare public key non-trivial
 - Same applies with usage 0 for protocols where clients don't distinguish between usages 0 and 2
- Recommendations:
 - Server chain MUST include the certificate pointed at by the TLSA record
 - Requires admin education
 - This is not current practice today

Type 0/1 Guidelines

- For some protocols, type 0/1 may not provide help
 - EG, STARTTLS man-in-the-middle attacks
 - These protocols SHOULD recommend against publishing and using 0/1
 - The SMTP draft will say "undefined behavior"
 - They MAY choose to map 0 $\,\rightarrow\,$ 2 and 1 $\,\rightarrow\,$ 3
 - If so, use the Type 2 and Type 3 guidelines

Interaction with Certificate Transparency

Certificate Transparency Interaction

- CT is designed to keep public CAs honest
- DANE is designed to bind certs to a DNS name
- CT says:
 - "TLS clients MUST reject certificates that do not have a valid SCT for the end-entity certificate."
 - "(Note: This effectively excludes self-signed and DANE-based certificates until some mechanism to control spam for those certificates is found. The authors welcome suggestions.)"
- DANE says:
 - Don't do CA checks if type 3 or type 2 is in use

Certificate Transparency Interaction

- Advice for protocols and/or implementations:
 - Pick one
 - Don't do both

Certificate Transparency Interaction What if you must do both?

- DANE Type 1/3:
 - Verification not subject to CT (there is no CA)
 - These bind the EE cert
 - Thus are immune to rogue or compromised CAs
- DANE Type 2 (Private-label CA):
 - Verification not subject to CT
- DANE Type 0 (Public PKIX CA):
 - CT still applies

What To Do With This Work?

- Accept as a WG document?
- BCP?
 - But some things were really "missing" from the original DANE spec
- Are there guidance items that are needed?
 - Algorithm rolling has been discussed as missing