DANE for SMTP

Viktor Dukhovni
&
Wes Hardaker

IETF 87, Berlin
July 2013
Addresses in SMTP

- `<mailbox@example.com>` is security agnostic:
 - SMTP with and without TLS runs over port 25
 - There is no URI scheme to designate “SMTP” vs. “SMTPS”
 - STARTTLS is used to signal TLS support
 - SMTP is multi-hop store & forward
 - TLS is **hop-by-hop**
 - SMTP addresses are NOT transport addresses
 - Typical minimum number of hops is 3
 - Some may be protected, some may not
 - MX RRs abstract hop destinations via DNS
1. Sender transmits to their Mail Transfer Agent (MTA)
2. MTA uses the receiver’s DNS “MX” records to find a destination MTA
3. The sender’s MTA sends email to the receiver’s MTA

Email Author

Sender’s MTA

MX Priority #1
SMTP Exchange

MX Priority #2

DNS Records

Receiver’s MTA
Problem #1: Fake MX Records

Unfortunately, it is possible to create fake MX records, allowing an attacker to pretend to be the right “real” destination.
Solution #1: DNSSEC

DNSSEC ensures that only good DNS records are believable.
Problem #2: Unprotected SMTP

Most SMTP server to server exchanges are unencrypted.

Eavesdropping Is Easy!
Solution #2: TLS-Protected SMTP

SMTP can run over encrypted TLS, but:
- Few servers do
- Management of CA Trust Anchors is hard
- MTA software doesn’t distribute TAs
Problem #3: SMTP Man-in-the-Middle

SMTP over TLS uses the “STARTTLS” command
- Man-in-the-middle allows for “I don’t support STARTTLS”
- Current policy is to deliver unencrypted if TLS is unavailable
Solution #3: SMTP over TLS with DANE

A DANE record indicates you **MUST** use TLS!
TLS and SMTP Summary

- MX/A... RRsets are insecure without DNSSEC
- Sender does not know when or how to use TLS
 - Except via administrative policy
- There is no user to click “OK”
 - Security must “just work”
 - With no “MUST use” signal, fallback to no-TLS
- STARTTLS allows for MITM downgrade attack
DANE and SMTP

● With DNSSEC and DANE we can:
 – Harden MX lookup via DNSSEC
 – Provide downgrade-resistant TLS support
 – Publish authentication public key digests (or keys)
 – Incremental adoption, without bilateral coordination!
 • It turns on automatically when both sides support it
DANE and SMTP

- SMTP TLS security depends on DNSSEC
 - If DNSSEC is broken, all bets are off
 - CAs and TLS alone fail to secure the transport
 - Usage 0 has same DNSSEC exposure as usage 2
 - Usage 1 has same DNSSEC exposure as usage 3
- Some MTAs (Exim and Postfix) have stated:
 - they may map 0 → 2 and 1 → 3
 - Will have empty CA lists by default
SMTP Referral Choices

- **Host SMTP yourself**
 - Good: MX to your own internal name
 - Ehhh: No MX: CNAME to your mail host (legal)

- **Outsource SMTP service**
 - Good: MX exchange name to their name
 - Ehhh: No MX: Use CNAMEs (legal but discouraged)
 - Bad: Copy their A and TLSA records to your zone (and point MX to your copies)

- **Don't do this anywhere (illegal):**
 - Ugly: MX records point to a CNAME
SMTP hosting example

• Easy example - MX to the outsourced name:
 – In client.com's zone:
    ```
    ```
 – In provider.com's zone:
    ```
    mx1.provider.com.   IN A ....
    _25._tcp.mx1.provider.com.   IN TLSA ...
    ```

• SNI:
 – Only a single certificate is needed
 (for “mx1.provider.com”)
TLSA records and MX records

- MX exchange name → TLSA base domain
 - This is the TLS transport end-point
 - Certificate peername:
 - SHOULD be the TLSA base name
 - MAY be the domain of the email address or configured transport domain
 - The provider publishes the TLSA record for their keys
 - The client simply points and doesn't publish data
 - SNI not essential to support multiple client domains

- Operational guidance:
 - Use MX records this way!
DANE SMTP Model Summary

- Opportunistic and downgrade-resistant
- No interactive user: reliability must be paramount
- Trusts DNSSEC
 - Recommends type 3 and then 2
 - Type 0 and 1 usage are undefined and SHOULD NOT be used
- Certificate chains MUST include the TA
What To Do With This Work?

- Merge content with draft-ietf-dane-smtp?
- Publish different components separately?
Extra Slides
PKIX and SMTP

• Handy for bilateral secure-channels
 – Manually configured TLS expectation policies and keys
 – Explicit TLS requirement not dependent on competence of remote DNS operator
 – Explicit sender choice of (agreed upon) CA(s)
 – No bleeding edge code, tested TLS PKI.
 – However fragile when peer switches MX providers, CAs, etc. without notice.
 – Only viable for peer sites willing to coordinate infrastructure changes with sender!
SMTP Hosting With CNAMEs

• RFC 5321 Section 5.1:
 – If a CNAME record is found, the resulting name is processed as if it were the initial name.

• Many domains are MX-hosted by outside providers.
 – Almost always via MX RRs
 – CNAMEs are an edge case:
 • “bob@some-cname.example.com” is rare
 • “mail.example.com IN MX 1 cname.example.com” is illegal
 – Transport mappings, however, use CNAMEs
 • My server directly maps example.com to smtp.example.net
SMTP hosting via MX CNAME (illegal)

- MTAs may support RFC non-conformant CNAMEs in MX hostnames.
- Example, MX host a CNAME in provider's zone:
 - In client.com's zone:
    ```
    client.com. IN MX 1 mx1.provider.com
    ```
 - In provider.com's zone:
    ```
    realmx.provider.com. IN A 192.0.2.1
    _25._tcp.realmx.provider.com. IN TLSA ...
    ```
- Works with TLSA RR at either MX exchange name
 - Or CNAME target if MTA and DNS operator agree.
SMTP hosting via MX CNAME (illegal)

- Example, MX host a CNAME in client's zone:
 - In client.com's zone:
    ```
    mx.client.com         IN CNAME mx.provider.com.
    _25._tcp.mx.client.com. IN TLSA ...
    ; (case I)
    ```
 - In provider.com's zone:
    ```
    mx.provider.com.      IN A 192.0.2.1
    _25._tcp.mx.provider.com. IN TLSA ...
    ; (case II)
    ```

- Case I (looking for a TLSA before CNAME expansion) problematic:
 - Provider must use a per-client certificate to match each client's MX base domain.
 - TLSA record must be copied/tracked from provider's server(s).

- Case II (looking for a TLSA record after CNAME expansion):
 - works just fine if MTA chases CNAMEs on MX records.

- Proposal: MTAs must chase CNAMEs to determine TLSA base name.
DNS and SMTP

• DNS trust unavoidable
 – Only place to store hop-by-hop security requirements
 – TLS Peername checks must trust the DNS
 • (they're pulling the peername from the MX record)
 – Without DNSSEC:
 • Spoofable MX records
 • Downgrade vulnerable TLS
 • No authentication
SMTP hosting and IP copying

• Harder example - MX points to an internal name:
 – In client.example.com's zone:
    ```
    ; data copied from provider's records:
    intmx.client.com. IN A 192.0.2.1 ; provider's address
    _25._tcp.intmx.client.com. IN TLSA ...
    ```

• Requires client copy outsource data
 – Bad practice for A records
 – Bad practice for TLSA records
 – SNI scaling issues with large # of certificates
 – Operational Guidance: Don't do this