Diameter Overload Control
Solutions: Issue Discussion

draft-campbell-dime-overload-
Issues-01

Issues Discussion

Issues that seem to cause confusion
Issues that have generated list discussion

Not Exhaustive

— Example: No piggybacking vs dedicated
application slides here

Trying not to be specific to one particular
proposal (but not always successful)

Non-Adjacent Overload Control

* Overload information exchanged between
Non-Adjacent nodes

— ... that don’t share a transport layer connection

— ... that are separated by a Diameter agent.

Non-Adjacent Use Cases

* Operator Interconnect — Operators exchange
overload info across a third party
Interconnection service

— e.g IPX
* Non-supporting agent — Nodes share overload

info across a Diameter agent that does not
support the OC mechanism.

Operator Interconnect Use Case

Edge
Agent

|

Network
Operator 1

-

_

Interconnect Provider

~

i gy S

],

J

—

Edge
Agent

Network
Operator 2

Interconnect Characteristics

* Interconnect provider may not support OC
mechanism

* Operators may not trust interconnect with OC
info

* Are operators likely to exchange OC info with
other operators at all?

Non-Supporting Agent

Overload
Control Island

|

Supporting
Node

|

Non-
Supporting
Node

Supporting
Node

Overload
Control Island

Non-Supporting Agent Characteristics

e Can create “Islands” of OC that can’t share
information

* Single administrative domain?

* Will clients and servers support OC before
agents do?

— Seems likely to be the opposite

Non-Adjacent Topology Issues

A node must know
which requests may hit
an overloaded node

— A node selects its peers

— Sometimes selects the
opposite endpoint
* j.e. Destination-Host

— Never selects non-
adjacent agents

[Server] [Server]

[Sometimes) A

this .
[Agent] [Agent]
[Never this %/)

(o) (=
B

Client
controls
this
choice

Non-Adjacent OC Negotiation

* Nodes need to negotiate or declare OC
support, and possibly negotiate parameters

e Easy for adjacent case — just use capabilities
exchange

 Harder for non-adjacent case
— Who do you negotiate with?

— How do you route negotiation messages??

— Multiple negotiated parameter sets on same
transport connection.

Non-Adjacent OC Report Delivery

* Where do you send OC reports?

 Must know topology past the peer
— Provisioned?

— Discovered?
* |s “everyone I've seen so far” good enough?
* Send in Diameter responses until everyone backs off?

* Report Ordering
— Handled at transport layer for adjacent
— Not guarantied for non-adjacent

Non-Adjacent OC Scopes

* Only adjacent peer can act on some scopes
— Peer Host
— Connection
— Must not be sent to a non-adjacent node
— Must not be acted upon by a non-adjacent node

 Need a way to distinguish adjacent from non-
adjacent reports.

Overload Scopes

 What are these “scope” things, really?

— “classifiers” that determine the set of messages
that need to be reduced

— Overload “contexts”

Overload Scopes

* Req 31
— Node may be overloaded for some purposes but
not others

— MUST allow granular overload reports, to avoid
over reporting
— MUST allow (at least):
* Node
* Realm
* Application
— MUST be extensible

Scope Authority Concept

* A node generating an overload report needs full
knowledge of the reported scope

— i.e. has “scope authority” for the scope
* This is easier for some scopes that indicate a
specific server
— Peer Node
— Connection
— Destination-Host

 Harder for broader scopes
— Realm
— Application-ID

Scope Authority

Connection, Peer

Host

— Only needs to
know about self

* Realm, App-ID

— Requires
knowledge of all
nodes that can
handle it

16

Scope Authority

* Server support of
larger scopes is
.
hard Server

1

Server Server

— Must sync load
between all servers
In group

(o

17

Scope Categories

Explicit — Values explicitly specified in the scope AVPs
Implicit — Values inferred from the Diameter message that
carries the report

— Only make sense for piggybacked solutions

— Example: Connection means “this connection”

Baseline — A scope that always applies
— Can refine scope by adding more scope AVPs
— Cannot grow scope beyond baseline
» Example: JJacques proposed baseline
» “this Realm” + “this App-Id” + “this Connection”

— draft-tschofenig-dime-overload-arch has a single implicit,
baseline scope

Default — A scope that applies if no scope is specified?
— Do we need this?

Scope Combinations

* roach-dime-overload-ctrl allows multiple
Scope AVPs on same overload report

— Different types refine the scope
e Defines a set intersection

 Example: Realm + Application-Id — request must
match both Realm _and_ Application-ID

— Same types expand the scope
* Defines a set union

 Example: Application-Id1 + Application-Id2 — the
request must match one or the other Application-Ids.

Mandatory Scopes

* Nothing mandatory to send .

Do we need any mandatory to understand?

— Options:
* At least one mandatory to accept for interop purposes

— Example: Connection, maybe Application-Id

* No mandatory to accept

— But either require at least one scope to be specified or define
a default

— Or define a baseline scope

Deprecate scopes?

* Should we deprecate the following?

— Host (aka Peer-Host)
* Mostly redundant with Connection

— But might save having to send the same report to the same
node multiple times, depending on node design.

* May be hard to implement with certain cluster or blade
architectures

— Session
* Too granular
* Likely to have thousands or millions of sessions

Thanks for Listening!

