RR based Traffic Steering Use Cases

draft-chen-idr-rr-based-traffic-steering-usecase-00

Yongqing Zhu (zhuyq@gsta.com)

Subin Wang (wangsb@gsta.com)

Mach Chen (mach.chen@huawei.com)

Shunwan Zhuang (zhuangshunwan@huawei.com)

IETF87 GROW Aug. 2013 Berlin

Problem Statement

- For Inter-AS scenario, BGP and IGP control traffic forwarding
 - BGP determines the exit ASBR of an AS
 - IGP determines how to reach to the exit ASBR of the AS
 - Both calculate route from the perspective of the calculator
- To fully use the network resource, reduce network congestion
 - Operators have to design and adjust the IGP metrics and relevant BGP policies frequently
 - IGP metric adjustment is the major method, but not efficient
 - BGP policies are troublesome and prone to configuration error

Problem Statement (cont.)

- Example of "helpless" IGP metric adjustment
 - A, B, C and D connect each other with links having the same metric
 - Requirements:
 - MAN1 <--> MAN2: through E-A-B,
 - MAN1<--> MAN3: through E-D-C,
 - Result in paradoxical metric requirements
 - Metric of Link EA < Metric of Link ED
 - Metric of Link EA > Metric of Link ED

MAN1

MAN3

MAN2

В

ins

Α

لأتحم

24

IP Core Network

Use Cases and Requirements (1)

- Multihoming Scenario
 - Different MAN pairs, different paths
 - MAN1-MAN3: A-B
 - MAN2-MAN4: D-C
 - Working and backup with different paths
 - Working path: A-B
 - Backup path: D-C
 - Different service types with different paths
 - VoIP: A-B
 - Other: D-C
 - Other requirements

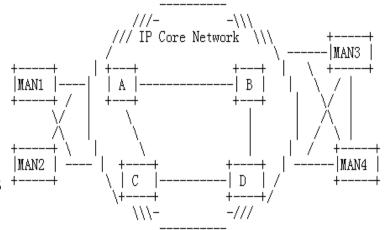
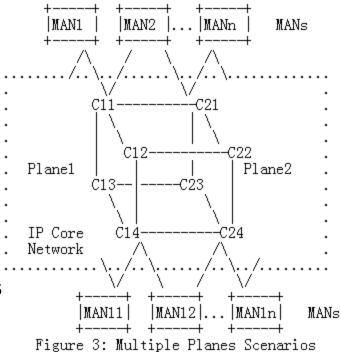



Figure 2: Multihoming Scenarios

Use Cases and Requirements (2)

- Multiple Planes
 - Different MAN pairs, different Planes
 - MAN1-MAN11: Plane1
 - MAN2-MAN12: Plane2
 - Working and backup with different Planes
 - Working path: A-B
 - Backup path: D-C
 - Different service types with different Planes
 - VoIP: A-B
 - Other: D-C
 - Load balancing based on the capacity of planes

Use Cases and Requirements (3)

- Multiple Exit/Entry
 - Choose the proper entry/exit based on link price and/or service type
 - Dynamically adjust the entry/exit based on link load and/or link price

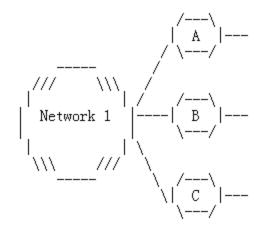


Figure 4: Multiple Entry/Exit (MEE)

RR based Traffic Steering

- RR can be seen as a centralized "controller"
 - The RR collects and maintains the topology, capacity, status of the network
 - TE like path calculation(e.g., CSPF)
 - Use IP routes to realize explicit path(could be either loose or strict)
 - Leverage the existing Route Reflection mechanism to advertise/"install" the routes to relevant clients (not to all clients)
 - Based on the fact that:
 - "A Route Reflector (RR) has the ability to "install"/distribute a route to its client with the nexthop that can be set to either the RR itself or any other different BGP speakers "

RR based Traffic Steering

- Example of RRTS
 - Path: S1-A-B-D1
 - RR will distribute:
 - a route (D1) to B with the nexthop set to D1; and
 - a route (D1) to A with the nexthop set to B, and
 - the route (D1) will be distributed to S1 by A.
- Except for the RR, no device is required to upgrade

Next Steps

• There is a pending implementation.

 Would like to solicit comments and feedbacks of the WG.

• Enrich and update the draft.