
HTTP Mutual auth

Yutaka OIWA
HTTPAUTH, IETF 87

1(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5.

Design Goal

Strongest-possible HTTP authentication
based on a single ID/password pair

Replacement for Basic/Digest
Simple to use
No additional devices
No client-stored data (e.g. PKI keys)

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 2

Provided Features (1)
Strong password authentication
Mutual server/client authentication

Authentication status mutually agreed
The client will know whether the server knows
him/her account, or just “lying”

Per-server/per-domain authentication
credentials

Authentication credentials localized
to domains or hosts
Mitigation for stolen server DBs and/or
malicious administrators

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 3

Provided Features (2)
Channel bindings

To lower layers: HTTPS (TLS certficate) and plain
HTTP (hostname)

Against man-in-the-middle attacks
To higher layers: providing secure shared keys

Application interface provided

Efficient re-authentication
Important for HTTP-based protocol uses
With protections for replay attack
Works good with pipelining, multiple connections,
and HTTP/2.0 multiplexing

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 4

How it works?

Using PAKE (a.k.a. ZKPP) as a tool
Adopted for HTTP 1.1 (and 2.0)
1. PAKE key exchange using secrets from the

same password
2. Use a hash to verify its correctness mutually
3. For re-authentication, only hashes are used

(like nonce cache in Digest)
4. Session keys can be discarded at any time

5(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5.

Design Status

Completed -- “working status”
Initial 4-message authentication
2-message fast re-authentication
Mandatory server-to-client authentication
using “Authentication-Info” header
Cryptographic primitive agility
Efficient and secure nonce management

Duplicated nonce detection is MUST
Implementable in a (small) constant memory
per session, in both server/client sides

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 6

Implementations

Working codes!
Server side

Apache module
Ruby/Webrick reference implementation

Client side
Ruby library reference implementation
Customized Mozilla Firefox (old 3.6)
Chromium (recent one) – almost done!

Status: published / to appear / now working on
(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 7

Security (1)
Strength against various attacks

Traffic eavesdropping (passive)
No password information leaked
Even off-line dictionary attack impossible

Traffic rewriting (network-level)
No password information leaked
No replay attack possible

– Thanks to strong shared keys and duplicate nonce
checking

Request/result will be rewritten:
for integrity/confidentiality, use HTTPS/TLS

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 8

Security (2)

Traffic forwarding (URL-level attack)
User has input the password of good.example.com
to bad.example.net – what will happen?

– (Natural) assumption: bad.example.net
does not know the exact password

Authentication will always fail
Forwarding traffics to good site will not work
Bad site can’t build forged successful result

No password information leaked to bad site
A valuable property even when HTTPS is used

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 9

Security (3)
Server database leakage

Stored credentials are “hashed”
Not the password equivalent (compare with Digest)
Salted by fixed data (domain name and user name)
Stored credentials are bound to each site/domain

Much safer than hash-based “Digest” algorithms
If passwords are strong enough against dictionary
attacks, security will not be broken

One strong password can be safely used
with multiple sites (technically)

not ethically recommended, of course
(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 10

Open Issues (1)

Standard interfaces to higher layers
We provide a key-provision facility
How to standardize its use?

Session continuation
Oauth MAC etc.
Content-body signature/authentication
Web application-layer key managements

How to share it among proposals?
– Draft-oiwa-httpauth-multihop-template is

a straw-man proposal

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 11

Open Issues (2)
Document Structure

Currently, crypto part is a separate draft
draft-oiwa-httpauth-mutual-algo (individual submission)

Separation was a Bar-BoF request
Provision for separate crypto discussion/reviews

Now, the situation has changed so much
WG has been formed
Area changed: Application → Security
Intended status changed: Std → Exp

What to do?
Merge it again? Or Promote the algo draft to WG draft?

– I need a new consensus to follow

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 12

HTTP Auth Extensions

Yutaka OIWA
HTTPAUTH, IETF 87

13(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5.

What’s this?

General user-experience extensions of
HTTP authentication for interactive clients

i.e. Web browsers
Not changing low-level behavior of
HTTP authentication

Thus, not applicable for simple HTTP clients

Independent from authentication schemas
Applicable for all interactive HTTP
authentication schemes

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 14

Features

Browser hints for authentication-related
behaviors

What to do if authentication does not occur?
– but do re-authentication if password already known

Redirect, instead of asking password
Do not ask for new authentication on this URI

What to do when user wanted to log out?
Redirect to a special “log-out” page

How long should authentication retained?
Time-out for inactive authentication sessions

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 15

Technical Design

New header “Authentication-Control”
For backward compatibility
For scheme independence
For simple use

One carefully-designed point:
simple use for simple use cases!

Setting the header globally will work
in .htaccess or apache.conf etc.
No additional modules/CGIs needed

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 16

Status

Deployable
Working code in Firefox-based
Mutual-auth implementation

For server side, no new code required at all

Some refinement/polishs may be good
Shorten keywords – received a feedback
Feature requests/completeness analysis?
Detailed semantics to be defined
-- especially regarding POST requests

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 17

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 18

Back-up slides
(for Mutual auth)

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 19

Security (4)
Phishing: preventing it as much as
technologically possible

The user’s password and other secrets will be safe,
even when the user talks with bad site;
under some assumptions:

Browsers will tell users whether Mutual is used or not
Users will not send passwords in other protocols

– by Basic, Web Forms, Digest, phone, papers etc.
Browsers will always tell mutual authentication result

– Required in the specification
Users will not proceed when authentication has failed
TLS correctly used for payload body safety

– But not relying on user’s careful checking of URL/subject

(c) Yutaka OIWA. Subject to RFC 5378 Sec. 5. 20

	HTTP Mutual auth
	Design Goal
	Provided Features (1)
	Provided Features (2)
	How it works?
	Design Status
	Implementations
	Security (1)
	Security (2)
	Security (3)
	Open Issues (1)
	Open Issues (2)
	HTTP Auth Extensions
	What’s this?
	Features
	Technical Design
	Status
	スライド番号 18
	Back-up slides�(for Mutual auth)
	Security (4)

