
The Opus Codec

Technical Plenary

IETF 87

Berlin, DE

July 29, 2013

Jean-Marc Valin, Greg Maxwell, Peter Saint-Andre,
Timothy B. Terriberry, Emil Ivov, Lorenzo Miniero,
Justin Uberti

Outline

● Remote Participation Experiment
● Overview of Opus
● Testing
● CODEC WG History and Lessons Learned
● Future work
● Opus deployment panel

 Meetecho provides remote participation to IETF sessions
 http://ietf87.conf.meetecho.com/

 Tutorial:
http://ietf87.conf.meetecho.com/index.php/WebRTC_Interface

 Conference room associated with a session
 Audio from the physical room mixer
 Video from a webcam

 Active participants (can contribute to the mix)
 Java Applet, WebRTC, Softphones, PSTN

 Passive participants (can only watch/listen)
 Conference mix made available as a stream

 RTSP, RTMP, HTML5

IETF Remote Participation

http://ietf87.conf.meetecho.com/
http://ietf87.conf.meetecho.com/index.php/WebRTC_Interface

 Remote participation for this technical plenary:
 http://www.meetecho.com/ietf87/tech_plenary

 For information on remote participation and additional links
relating to OPUS, please check the IAB wiki:
http://trac.tools.ietf.org/group/iab/trac/wiki/IETF-87

 WebRTC-only setup available for remote speakers
 Asterisk+Opus mixing audio at 48kHz
 Open source MCU switching video feeds

 http://lynckia.com/
 Have something to say?

 Raise your hand! (well, maybe later)

Opus Experiment (Live Now!)

http://www.meetecho.com/ietf87/tech_plenary
http://trac.tools.ietf.org/group/iab/trac/wiki/IETF-87
http://lynckia.com/

Outline

● Remote Participation Experiment
● Overview of Opus (Jean-Marc Valin)
● Testing
● CODEC WG History and Lessons Learned
● Future work
● Opus deployment panel

What is Opus?
● Audio codec designed for interactive

Internet application
● Published as RFC 6716 in Sept 2012
● Works for most audio applications
● Adopted as MTI codec for WebRTC

Why a New Audio Codec?

http://xkcd.com/927/
http://imgs.xkcd.com/comics/standards.png

http://xkcd.com/927/
http://imgs.xkcd.com/comics/standards.png

Why a New Audio Codec?
● No pre-existing audio codec that would:

– Provide good audio quality over the
Internet

– Be published as a standard

– Be freely implementable

Two types of audio codecs
Speech codecs Audio codecs

Voice communication Music streaming/storage

Low delay High delay

Narrowband-Wideband Fullband

“Toll quality” High Quality

G.729, AMR, Speex MP3, AAC, Vorbis

● We want (and can now afford) the best of
both worlds

Applications and Standards
(2010)
Application Codec

VoIP with PSTN AMR-NB

Wideband VoIP/videoconference AMR-WB

High-quality videoconference G.719

Low-bitrate music streaming HE-AAC

High-quality music streaming AAC-LC

Low-delay broadcast AAC-ELD

Network music performance

Applications and Standards
(2013)
Application Codec

VoIP with PSTN Opus

Wideband VoIP/videoconference Opus

High-quality videoconference Opus

Low-bitrate music streaming Opus

High-quality music streaming Opus

Low-delay broadcast Opus

Network music performance Opus

Specifications
● Highly flexible

– Bit-rates from 6 kb/s to 510 kb/s

– Narrowband (8 kHz) to fullband (48 kHz)

– Frame sizes from 2.5 ms to 60 ms

– Speech and music support

– Mono and stereo

– Optional forward error correction (FEC)
● All changeable dynamically with in-band

signalling

Implementation
● Available for floating-point and fixed-point
● Wide range of supported platforms

– x86, ARM, MIPS, SPARC, VAX, ...
● Arch-specific optimization on x86, ARM
● Quality vs complexity trade-off
● Support for packet-loss concealment (PLC)

and discontinuous transmission (DTX)

Optimized for the Internet?
● More than the ability to conceal lost packets
● Wide range of operating conditions (delay,

bit-rate, loss) that vary with time
● Transports data in bytes
● RTP payload: the simpler the better

How it Works
● Merge of two technologies

– SILK: Skype's linear prediction speech
codec

– CELT: Xiph.Org's low-delay transform codec

● Better than the sum of the parts
– Hybrid mode

– Mode switching

Adoption
● VoIP/videoconference

– WebRTC (Firefox, Chrome)

– Many VoIP clients (Jitsi, Meetecho,
CounterPath)

– Games (Mumble, TeamSpeak)
● Players

– HTML5 (Firefox, Chrome*)

– Standalone (Rockbox, VLC, Foobar 2k)
● Network music performances
● Streaming (icecast)

Outline

● Remote Participation Experiment
● Overview of Opus
● Testing (Greg Maxwell)
● CODEC WG History and Lessons Learned
● Future work
● Opus deployment panel

Testing Opus

● Opus has a broad scope
– 64 configurations = 4096 configuration

transition pairs

– At 1275 bitrates (in CBR alone)

● Multiple testing objectives
– Development testing

– Quality and bitrate targets: “Better than”
Speex, iLBC, G.722.1, G.722.1C (RFC
6366)

● Used both subjective and objective testing

Subjective results
● draft-ietf-codec-results-03

– Four different testing parties on the final codec

– Seven more on pre-final bitstreams

● Some highlights:
– Google tests

● Speech at multiple rates

● Main tests included 6 samples, 17 listeners

● BS.1534-1 “MUSHRA”

– HydrogenAudio

● 64kbit/sec stereo music

● 30 samples, 33 listeners, 531 final measurements

● BS.1116-1 “ABC/HR”

Google results

N
arro

w
b

an
d

W
id

eb
an

d
/

F
u

llb
an

d
N

arro
w

b
an

d

HydrogenAudio results

Why we need more than formal
listening tests

● Formal listening tests are expensive, meaning
– Reduced coverage

– Infrequent repetition

● Insensitivity
– “Everything tied!”

– Even major errors may only rarely be audible

– Can’t detect matched encoder/decoder errors

– Can’t detect underspecified behavior (e.g.,
“works on my architecture”)

Operational Testing

● Deployed to millions of users as part of Mumble,
Skype, …
– “It sounds good except when there’s just bass”

– “It sounds bad on this file”

– “Too many consecutive losses sound bad”

– “If I pass in NaNs things blow up”

Objective Quality Testing
● Run thousands of hours of audio through the codec

with many settings
– Used a 160 core cluster

– Can run the codec 6400x real time

– 7 days of computation is 122 years of audio

●

The Opus spec is executable…
● That lets us test in many different ways:

– Operational testing

– Objective quality testing

– Unit testing (including exhaustive component tests)

– Range coder mismatch testing

– Static analysis

– Instrumentation

– Line and branch coverage analysis

– White- and blackbox “fuzz” testing

– Multiplatform testing

– Implementation interoperability testing

Outline

● Remote Participation Experiment
● Overview of Opus
● Testing
● CODEC WG History and Lessons Learned

(Peter Saint-Andre)
● Future work
● Opus deployment panel

27

“Storming”
(IETF 75, Stockholm)

28

“Forming”
(IETF 76, Hiroshima)

● A much more civilized conversation :-)
● Still skepticism about feasibility
● But a willingness to try
● A sense that even if we failed, we’d learn

something interesting

29

“Norming”
● RFC 6366: Requirements for an Internet

Audio Codec (August 2011)
● RFC 6569: Guidelines for Development of

an Audio Code within the IETF (March
2012)

● Expectations set about IPR disclosures
(cf. RFC 6702) - 13 received, all of them
timely

30

“Performing”
● Melding the two primary contributions

(CELT and SILK) went surprisingly well
● Working together on common code gave

a sense of shared purpose / enterprise
● However, participants not working on the

code might have felt like they were on
the outside looking in

31

Early Sources of
Confusion

● One codec or many?
● Developing something new or selecting

an existing technology?
● What does it mean to be “optimized for

the Internet”?
● What are the preferred IPR terms?

32

“Those Who Fail to Plan
Are Planning to Fail”

● Have a plan for managing liaison
relationships

● Have a plan for testing and for using
the results to improve the codec

● Have a plan for producing an
unencumbered technology

33

The Joys of
Running Code

● Arguments over code efficiency can
distract from the main purpose

● What’s the relationship between the
codec and the signaling plane?
(Lesson: use signaling where that would
help...)

● Treating source code as normative makes
typical IETF reviews more difficult

34

Stumbling Towards
Ecstasy

● Did the WG succeed despite itself?
● In part: plenty of room for improvement if

we do something similar again
● Critical to have a group of well-informed,

passionate contributors with common
goal

● Most important, the results are great and
Opus sounds wonderful!

Outline

● Remote Participation Experiment
● Overview of Opus
● Testing
● CODEC WG History and Lessons Learned
● Future work (JM Valin & Tim Terriberry)

● Opus
● Video

● Opus deployment panel

Specifications

● Defining payloads
– RTP

– Ogg

– Matroska
● Minor fixes to RFC 6716

Implementation

● Upcoming libopus 1.1 release
– Fully compatible with RFC

– Quality improvements

– Surround improvements

– Speech/music detection

– Optimizations (72% faster decoder on
ARM)

– libopus 1.1-beta demo:
http://people.xiph.org/~xiphmont/demo/opus/demo3.shtml

http://people.xiph.org/~xiphmont/demo/opus/demo3.shtml

Adoption

● Broadcast
– Broadcast equipment (Tieline)

– Digital radio (DRM, DAB)

– Testing (EBU)
● Internet radio

– http://dir.xiph.org/by_format/Opus
● Wireless audio

– Speakers, microphones

http://dir.xiph.org/by_format/Opus

Case Study: WebRTC MTI

● Mandatory To Implement (MTI) Audio Codec(s)
– Concrete proposal (Opus+G.711) raised and

decided

● In a single meeting (IETF-84 in
Vancouver)

● Near-unanimous consensus

● Mandatory To Implement (MTI) Video Codec(s)
– Debated heavily for over two years

– Decision postponed at least 2 times (so far)

– No resolution in sight

Why Was Audio So Much
Easier?
● Opus produced by open, multistakeholder

standardization effort
– Including 3 of the 4 major browser vendors

● Royalty-free licensing with clear IPR history
– Specific disclosures => easily evaluated

● And maybe... it wasn’t so easy
– Product of 3 years of vigorous debate

– But all that time spent making forward
progress

Doing the same for video
● Xiph.Org Foundation’s Daala project

– https://xiph.org/daala/

– “Coding Party” in May

● 169 commits from 14 authors

● Including “individuals” from Xiph.Org, Mozilla, Cisco, Red Hat,
Debian, RDIO, Voicetronix, etc.

– Demos

● https://people.xiph.org/~xiphmont/demo/daala/demo1.shtml

● https://people.xiph.org/~xiphmont/demo/daala/demo2.shtml

● IETF effort
– Bof @ IETF-85

– List: video-codec@ietf.org

– Drafts: draft-terriberry-codingtools, draft-egge-videocodec-tdlt,
draft-valin-videocodec-pvq, draft-terriberry-ipr-license

https://xiph.org/daala/
https://people.xiph.org/~xiphmont/demo/daala/demo1.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo2.shtml
https://www.ietf.org/mailman/listinfo/video-codec
https://tools.ietf.org/html/draft-terriberry-codingtools
https://tools.ietf.org/html/draft-egge-videocodec-tdlt
https://tools.ietf.org/html/draft-valin-videocodec-pvq
https://tools.ietf.org/html/draft-terriberry-ipr-license

Opus Deployment Panel

Timothy B. Terriberry, Mozilla/Xiph.Org Foundation: Opus in
Firefox (and other places)

Justin Uberti, Google: Opus Deployment at Google

Emil Ivov, Jitsi: Audio codecs in Jitsi

Lorenzo Miniero, MeetEcho: Opus Integration in Asterisk

Opus in Firefox
● <audio> tag support in Firefox 15 (Aug. 2012)

– Firefox 17 (Nov. 2012): Multichannel support
– Firefox 18 (Jan. 2013): Metadata API
– Firefox 20 (Apr. 2013): Chained streams

● WebRTC support in Firefox 22 (Jun. 2013)
– In project branch since Aug. 2012
– Currently mono-only (limitation of capture, AEC)

● MediaRecorder API in Firefox 25 (Oct. 2013)
– https://bugzilla.mozilla.org/show_bug.cgi?id=896935

● Music App support in Firefox OS 1.1 (release TBD)

https://bugzilla.mozilla.org/show_bug.cgi?id=896935

Opus in other places
● VLC 2.0.4 (Oct. 2012, thanks to Greg Maxwell)

– Album art support in 2.1.0 (forthcoming)
● libopusfile

– Simple decode/playback library
– Handles seeking, metadata, multichannel,

chaining
– Pluggable I/O backends (FILE, memory, http[s])
– In Debian testing, Fedora 18, FreeBSD,

homebrew, etc.
– Used by: xmms2, qmmp, cmus, taglib, sox,

ioquake, more...

Chrome: Initial Work

• OPUS is a very general codec with a wide
range of parameters and tools.

• Integrator needs to think through which
configurations it wants to support.

• Had to also solve a few integration complexities
in Chrome:
o Determination of default params
o 48K sampling rate
o Integration with Chrome NetEQ

Chrome Timeline

• May 2012
Initial sketches on integration

• September 2012
Integration started

• October 2012
Working implementation

• November 2012
License concerns resolved

• December 2012 (Chrome 25)
Opus fully enabled in WebRTC

Chrome Timeline (cont’d)

• February 2013
Chrome-Firefox interop demo with Opus

• March 2013 (Chrome 27)
Opus becomes the default codec in
WebRTC

• July 2013
Opus + WebRTC used for remote
participation at IETF

Chrome: Current Day

Continuing to test and improve:

• Use of Opus as default pointed out super-
wideband issues in Chrome echo
canceller

• Complexity on mobile CPUs needs tuning

• Proper FEC at all bitrates is not trivial

audio codecs in Jitsi
history evolution goals dilemmas

then Opus happened
« totally open, royalty-free, highly versatile audio codec »

things we love in Opus
quality, usability, stereo, fullband, packet loss

concealment (plc), forrward error correction (fec), surround,
 variable bit-rate … or not, music audio detect, manually

controllable bitrate,

born at the IETF

Integrating Opus (1)
 First step was to provide lightweight integration

 Opus encoded HTML5 stream
 Available since IETF85 in Atlanta

 Open source setup
 Asterisk providing mixed audio signals...

 ... opusenc encodes the audio...
 ... oggfwd forwards it to the streamer...
 ... Icecast does HTML5 streaming

Integrating Opus (2)
 Next step was integration in the core itself

 Additional codec in conference bridge
 Available since IETF86 in Orlando

 Open source implementation
 New Opus codec module implemented for Asterisk

11
 More on this in a minute...

 Made available for WebRTC remote attendees
 Chrome (IETF86) and Firefox (IETF87)
 Other endpoints not modified, all interoperable

 Standards are nice!

Asterisk integration
 Asterisk integration made available as open source
 Transcoding support for Asterisk 11

 https://github.com/meetecho/asterisk-opus
 Opus (transcoding) and VP8 (passthrough)

 Automatically caps Opus to peer capabilities
 e.g., Opus capped at 8kHz if talking to G.711

 Needs work, but good feedback so far
 Passthrough support for (upcoming) Asterisk 12

 https://issues.asterisk.org/jira/browse/ASTERISK-21981
 Opus and VP8 (passthrough only)
 Working with Asterisk community on this

https://github.com/meetecho/asterisk-opus
https://issues.asterisk.org/jira/browse/ASTERISK-21981

Open Mike

	Slide1
	Slide12
	Slide76
	Slide74
	Slide83
	Slide9
	Slide10
	Slide11
	Slide13
	Slide14
	Slide15
	Slide16
	Slide17
	Slide18
	Slide19
	Slide20
	Slide84
	Slide22
	Slide23
	Slide24
	Slide25
	Slide26
	Slide28
	Slide29
	Slide27
	Slide85
	Slide43
	Slide44
	Slide45
	Slide46
	Slide47
	Slide48
	Slide49
	Slide50
	Slide86
	Slide34
	Slide35
	Slide36
	Slide38
	Slide39
	Slide40
	Slide 42
	Slide52
	Slide53
	Slide78
	Slide79
	Slide80
	Slide81
	Slide87
	Slide88
	Slide89
	Slide65
	Slide66
	Slide67
	Slide8

