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 Meetecho provides remote participation to IETF sessions
 http://ietf87.conf.meetecho.com/

 Tutorial: 
http://ietf87.conf.meetecho.com/index.php/WebRTC_Interface

 Conference room associated with a session
 Audio from the physical room mixer
 Video from a webcam

 Active participants (can contribute to the mix)
 Java Applet, WebRTC, Softphones, PSTN

 Passive participants (can only watch/listen)
 Conference mix made available as a stream

 RTSP, RTMP, HTML5

IETF Remote Participation

http://ietf87.conf.meetecho.com/
http://ietf87.conf.meetecho.com/index.php/WebRTC_Interface


 Remote participation for this technical plenary:
 http://www.meetecho.com/ietf87/tech_plenary

 For information on remote participation and additional links 
relating to OPUS, please check the IAB wiki: 
http://trac.tools.ietf.org/group/iab/trac/wiki/IETF-87

 WebRTC-only setup available for remote speakers
 Asterisk+Opus mixing audio at 48kHz
 Open source MCU switching video feeds

 http://lynckia.com/
 Have something to say?

 Raise your hand! (well, maybe later)

Opus Experiment (Live Now!)

http://www.meetecho.com/ietf87/tech_plenary
http://trac.tools.ietf.org/group/iab/trac/wiki/IETF-87
http://lynckia.com/
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What is Opus?
● Audio codec designed for interactive 

Internet application
● Published as RFC 6716 in Sept 2012
● Works for most audio applications
● Adopted as MTI codec for WebRTC



Why a New Audio Codec?

http://xkcd.com/927/
http://imgs.xkcd.com/comics/standards.png

http://xkcd.com/927/
http://imgs.xkcd.com/comics/standards.png


Why a New Audio Codec?
● No pre-existing audio codec that would:

– Provide good audio quality over the 
Internet

– Be published as a standard

– Be freely implementable



Two types of audio codecs
Speech codecs Audio codecs

Voice communication Music streaming/storage

Low delay High delay

Narrowband-Wideband Fullband

“Toll quality” High Quality

G.729, AMR, Speex MP3, AAC, Vorbis

● We want (and can now afford) the best of 
both worlds



Applications and Standards 
(2010)
Application Codec

VoIP with PSTN AMR-NB

Wideband VoIP/videoconference AMR-WB

High-quality videoconference G.719

Low-bitrate music streaming HE-AAC

High-quality music streaming AAC-LC

Low-delay broadcast AAC-ELD

Network music performance



Applications and Standards 
(2013)
Application Codec

VoIP with PSTN Opus

Wideband VoIP/videoconference Opus

High-quality videoconference Opus

Low-bitrate music streaming Opus

High-quality music streaming Opus

Low-delay broadcast Opus

Network music performance Opus



Specifications
● Highly flexible

– Bit-rates from 6 kb/s to 510 kb/s

– Narrowband (8 kHz) to fullband (48 kHz)

– Frame sizes from 2.5 ms to 60 ms

– Speech and music support

– Mono and stereo

– Optional forward error correction (FEC)
● All changeable dynamically with in-band 

signalling



Implementation
● Available for floating-point and fixed-point
● Wide range of supported platforms

– x86, ARM, MIPS, SPARC, VAX, ...
● Arch-specific optimization on x86, ARM
● Quality vs complexity trade-off
● Support for packet-loss concealment (PLC) 

and discontinuous transmission (DTX)



Optimized for the Internet?
● More than the ability to conceal lost packets
● Wide range of operating conditions (delay, 

bit-rate, loss) that vary with time
● Transports data in bytes
● RTP payload: the simpler the better



How it Works
● Merge of two technologies

– SILK: Skype's linear prediction speech 
codec

– CELT: Xiph.Org's low-delay transform codec

● Better than the sum of the parts
– Hybrid mode

– Mode switching



Adoption
● VoIP/videoconference

– WebRTC (Firefox, Chrome)

– Many VoIP clients (Jitsi, Meetecho, 
CounterPath)

– Games (Mumble, TeamSpeak)
● Players

– HTML5 (Firefox, Chrome*)

– Standalone (Rockbox, VLC, Foobar 2k)
● Network music performances
● Streaming (icecast)
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Testing Opus

● Opus has a broad scope
– 64 configurations = 4096 configuration 

transition pairs

– At 1275 bitrates (in CBR alone)

● Multiple testing objectives
– Development testing

– Quality and bitrate targets: “Better than” 
Speex, iLBC, G.722.1, G.722.1C (RFC 
6366)

● Used both subjective and objective testing



Subjective results
● draft-ietf-codec-results-03

– Four different testing parties on the final codec

– Seven more on pre-final bitstreams

● Some highlights:
– Google tests

● Speech at multiple rates

● Main tests included 6 samples, 17 listeners

● BS.1534-1 “MUSHRA”

– HydrogenAudio

● 64kbit/sec stereo music

● 30 samples, 33 listeners, 531 final measurements

● BS.1116-1 “ABC/HR”



Google results
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HydrogenAudio results



Why we need more than formal 
listening tests

● Formal listening tests are expensive, meaning
– Reduced coverage

– Infrequent repetition

● Insensitivity
– “Everything tied!”

– Even major errors may only rarely be audible

– Can’t detect matched encoder/decoder errors

– Can’t detect underspecified behavior (e.g., 
“works on my architecture”)



Operational Testing

● Deployed to millions of users as part of Mumble, 
Skype, …
– “It sounds good except when there’s just bass”

– “It sounds bad on this file”

– “Too many consecutive losses sound bad”

– “If I pass in NaNs things blow up”



Objective Quality Testing
● Run thousands of hours of audio through the codec 

with many settings
– Used a 160 core cluster

– Can run the codec 6400x real time

– 7 days of computation is 122 years of audio

●



The Opus spec is executable…
● That lets us test in many different ways:

– Operational testing

– Objective quality testing

– Unit testing (including exhaustive component tests)

– Range coder mismatch testing

– Static analysis

– Instrumentation

– Line and branch coverage analysis

– White- and blackbox “fuzz” testing

– Multiplatform testing

– Implementation interoperability testing
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27

“Storming” 
(IETF 75, Stockholm)
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“Forming”
(IETF 76, Hiroshima)

● A much more civilized conversation :-)
● Still skepticism about feasibility
● But a willingness to try
● A sense that even if we failed, we’d learn 

something interesting
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“Norming”
● RFC 6366: Requirements for an Internet 

Audio Codec (August 2011)
● RFC 6569: Guidelines for Development of 

an Audio Code within the IETF (March 
2012)

● Expectations set about IPR disclosures 
(cf. RFC 6702) - 13 received, all of them 
timely
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“Performing”
● Melding the two primary contributions 

(CELT and SILK) went surprisingly well
● Working together on common code gave 

a sense of shared purpose / enterprise
● However, participants not working on the 

code might have felt like they were on 
the outside looking in
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Early Sources of 
Confusion

● One codec or many?
● Developing something new or selecting 

an existing technology?
● What does it mean to be “optimized for 

the Internet”?
● What are the preferred IPR terms?
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“Those Who Fail to Plan 
Are Planning to Fail”

● Have a plan for managing liaison 
relationships

● Have a plan for testing and for using 
the results to improve the codec

● Have a plan for producing an 
unencumbered technology
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The Joys of 
Running Code

● Arguments over code efficiency can 
distract from the main purpose

● What’s the relationship between the 
codec and the signaling plane? 
(Lesson: use signaling where that would 
help...)

● Treating source code as normative makes 
typical IETF reviews more difficult
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Stumbling Towards 
Ecstasy

● Did the WG succeed despite itself?
● In part: plenty of room for improvement if 

we do something similar again
● Critical to have a group of well-informed, 

passionate contributors with common 
goal

● Most important, the results are great and 
Opus sounds wonderful!
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Specifications

● Defining payloads
– RTP

– Ogg

– Matroska
● Minor fixes to RFC 6716



Implementation

● Upcoming libopus 1.1 release
– Fully compatible with RFC

– Quality improvements

– Surround improvements

– Speech/music detection

– Optimizations (72% faster decoder on 
ARM)

– libopus 1.1-beta demo: 
http://people.xiph.org/~xiphmont/demo/opus/demo3.shtml

http://people.xiph.org/~xiphmont/demo/opus/demo3.shtml


Adoption

● Broadcast
– Broadcast equipment (Tieline)

– Digital radio (DRM, DAB)

– Testing (EBU)
● Internet radio

– http://dir.xiph.org/by_format/Opus
● Wireless audio

– Speakers, microphones

http://dir.xiph.org/by_format/Opus


Case Study: WebRTC MTI

● Mandatory To Implement (MTI) Audio Codec(s)
– Concrete proposal (Opus+G.711) raised and 

decided

● In a single meeting (IETF-84 in 
Vancouver)

● Near-unanimous consensus

● Mandatory To Implement (MTI) Video Codec(s)
– Debated heavily for over two years

– Decision postponed at least 2 times (so far)

– No resolution in sight



Why Was Audio So Much 
Easier?
● Opus produced by open, multistakeholder 

standardization effort
– Including 3 of the 4 major browser vendors

● Royalty-free licensing with clear IPR history
– Specific disclosures => easily evaluated

● And maybe... it wasn’t so easy
– Product of 3 years of vigorous debate

– But all that time spent making forward 
progress



Doing the same for video
● Xiph.Org Foundation’s Daala project

– https://xiph.org/daala/

– “Coding Party” in May

● 169 commits from 14 authors

● Including “individuals” from Xiph.Org, Mozilla, Cisco, Red Hat, 
Debian, RDIO, Voicetronix, etc.

– Demos

● https://people.xiph.org/~xiphmont/demo/daala/demo1.shtml

● https://people.xiph.org/~xiphmont/demo/daala/demo2.shtml

● IETF effort
– Bof @ IETF-85 

– List: video-codec@ietf.org

– Drafts: draft-terriberry-codingtools, draft-egge-videocodec-tdlt, 
draft-valin-videocodec-pvq, draft-terriberry-ipr-license

https://xiph.org/daala/
https://people.xiph.org/~xiphmont/demo/daala/demo1.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo2.shtml
https://www.ietf.org/mailman/listinfo/video-codec
https://tools.ietf.org/html/draft-terriberry-codingtools
https://tools.ietf.org/html/draft-egge-videocodec-tdlt
https://tools.ietf.org/html/draft-valin-videocodec-pvq
https://tools.ietf.org/html/draft-terriberry-ipr-license


Opus Deployment Panel

Timothy B. Terriberry, Mozilla/Xiph.Org Foundation: Opus in 
Firefox (and other places)

Justin Uberti, Google: Opus Deployment at Google

Emil Ivov, Jitsi: Audio codecs in Jitsi

Lorenzo Miniero, MeetEcho: Opus Integration in Asterisk



Opus in Firefox
● <audio> tag support in Firefox 15 (Aug. 2012)

– Firefox 17 (Nov. 2012): Multichannel support
– Firefox 18 (Jan. 2013): Metadata API
– Firefox 20 (Apr. 2013): Chained streams

● WebRTC support in Firefox 22 (Jun. 2013)
– In project branch since Aug. 2012
– Currently mono-only (limitation of capture, AEC)

● MediaRecorder API in Firefox 25 (Oct. 2013)
– https://bugzilla.mozilla.org/show_bug.cgi?id=896935

● Music App support in Firefox OS 1.1 (release TBD)

https://bugzilla.mozilla.org/show_bug.cgi?id=896935


Opus in other places
● VLC 2.0.4 (Oct. 2012, thanks to Greg Maxwell)

– Album art support in 2.1.0 (forthcoming)
● libopusfile

– Simple decode/playback library
– Handles seeking, metadata, multichannel, 

chaining
– Pluggable I/O backends (FILE, memory, http[s])
– In Debian testing, Fedora 18, FreeBSD, 

homebrew, etc.
– Used by: xmms2, qmmp, cmus, taglib, sox, 

ioquake, more...



Chrome: Initial Work

• OPUS is a very general codec with a wide 
range of parameters and tools.

• Integrator needs to think through which 
configurations it wants to support.

• Had to also solve a few integration complexities 
in Chrome:
o Determination of default params
o 48K sampling rate
o Integration with Chrome NetEQ



Chrome Timeline

• May 2012
Initial sketches on integration

• September 2012
Integration started

• October 2012
Working implementation

• November 2012
License concerns resolved

• December 2012 (Chrome 25)
Opus fully enabled in WebRTC



Chrome Timeline (cont’d)

• February 2013
Chrome-Firefox interop demo with Opus

• March 2013 (Chrome 27)
Opus becomes the default codec in 
WebRTC

• July 2013
Opus + WebRTC used for remote 
participation at IETF



Chrome: Current Day

Continuing to test and improve:

• Use of Opus as default pointed out super-
wideband issues in Chrome echo 
canceller

• Complexity on mobile CPUs needs tuning

• Proper FEC at all bitrates is not trivial



audio codecs in Jitsi
history       evolution       goals       dilemmas



then Opus happened
« totally open, royalty-free, highly versatile audio codec »



things we love in Opus
quality,    usability,    stereo,    fullband,    packet loss 

concealment (plc),    forrward error correction (fec),    surround, 
   variable bit-rate … or not,    music audio detect,    manually 

controllable bitrate,    

born at the IETF



Integrating Opus (1)
 First step was to provide lightweight integration

 Opus encoded HTML5 stream
 Available since IETF85 in Atlanta

 Open source setup
 Asterisk providing mixed audio signals...

 ... opusenc encodes the audio...
 ... oggfwd forwards it to the streamer...
 ... Icecast does HTML5 streaming 



Integrating Opus (2)
 Next step was integration in the core itself

 Additional codec in conference bridge
 Available since IETF86 in Orlando

 Open source implementation
 New Opus codec module implemented for Asterisk 

11
 More on this in a minute...

 Made available for WebRTC remote attendees
 Chrome (IETF86) and Firefox (IETF87)
 Other endpoints not modified, all interoperable

 Standards are nice!



Asterisk integration
 Asterisk integration made available as open source
 Transcoding support for Asterisk 11

 https://github.com/meetecho/asterisk-opus
 Opus (transcoding) and VP8 (passthrough)

 Automatically caps Opus to peer capabilities
 e.g., Opus capped at 8kHz if talking to G.711

 Needs work, but good feedback so far
 Passthrough support for (upcoming) Asterisk 12

 https://issues.asterisk.org/jira/browse/ASTERISK-21981
 Opus and VP8 (passthrough only)
 Working with Asterisk community on this

https://github.com/meetecho/asterisk-opus
https://issues.asterisk.org/jira/browse/ASTERISK-21981


Open Mike
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