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• Why do error-correction coding at the transport layer ?

• Congestion control on lossy paths

• Implementation & performance measurements



Why error-correction coding at the transport layer ?

• Interference-related losses are
challenging, yet increasingly common
in dense 802.11 deployments

• Hidden terminals

• New dynamic devices e.g. channel
bonding, will only make this worse

• Microwave interference in unlicensed
band



Why error-correction coding at the transport layer ?

Why not enhance error-correction at the
link layer ? Link layer offers many
advantages:

• Link layer has access to low-level
information e.g. whether a packet loss
is due to queue overflow or channel
error.

• Usually quick feedback, so ARQ
efficient

• Hop by hop encoding is generally more
efficient than end-to-end encoding

If link layer improvements are possible,
make them !
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Why error-correction coding at the transport layer ?

Transport layer has some compelling practical advantages:

• No need for changes to installed
network equipment. Recent estimate is
1.2 billion wireless devices shipped to
date.

• What about servers, and especially
user equipment ?
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Why error-correction coding at the transport layer ?

Transport layer has some compelling
practical advantages:

• No need for changes to installed
network equipment

• No need for root-privilege changes
to user equipment, just a
user-space app

• No need for changes to installed
servers
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Why error-correction coding at the transport layer ?

Plus potential exists for considerable performance gains.
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Congestion control on lossy paths

• Standard congestion control approach
is window based using AIMD

• cwnd number of unacknowledged
packets in flight

• cwnd ← cwnd + 1 every RTT without
loss

• cwnd ← cwnd/2 on loss
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Congestion control on lossy paths

• Standard approach assumes loss =
congestion

• On lossy path, backoff on loss means
cwnd collapses to a low value

• Low throughput, many timeouts
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Congestion control on lossy paths

Modify AIMD backoff on loss to cwnd ← cwnd × RTTmin

RTT

time

queue occupancy 

cwnd 

Q

W=BT+Q

pkts

RTT = (BT+Q)/B = T+Q/B

If queue empty, RTT = T, cwnd = BT

Backo! cwnd to W T/(T+Q/B) = W BT/(BT+Q)



Congestion control on lossy paths

• Modify AIMD backoff on loss to
cwnd ← cwnd × RTTmin

RTT

• Never ignores packet loss

• Reverts to standard TCP on links
without noise losses

• On lossy links yields dramatic
improvement in throughput by
avoiding cwnd collapse.

• An important source of the x10-x20
thoughput gains observed.
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Congestion control on lossy paths

• A hybrid loss-delay approach, well established cf Compound TCP

• Builds on earlier work in H-TCP, well tested over a wide range of
network conditions

• Known issues 1. Does not distinguish between:

1. A congested lossy link (where have packet losses and the RTT is
much higher than the base propagation delay)

2. A non-congested lossy link where the base RTT fluctuates. How
common are such links ?

Takes prudent approach and assumes (i) i.e. reduces send rate.

• Known issues 2. On paths with a standing queue, can be difficult to
observe RTTmin. How common are such links ?



Link layer-agnostic measurements

Testbed setup:

Server Client
Dummynet

Router

Buffer, size Q 

packets

Packet discard

probability p

Rate, 
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Delay T
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Link layer-agnostic measurements
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Link layer-agnostic measurements

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

Loss Probability

E
ffi

ci
en

cy

 

 

CTCP
CTCP, 0.25 BDP Buffer
Std TCP
Std TCP Theory
H−TCP
Cubic

Link 25Mbps, RTT 20ms



Link layer-agnostic measurements

Friendliness - loss-free path
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Std TCP (10Mbps link)

Coded TCP (10Mbps link)

Std TCP (25Mbps link)

Coded TCP (25Mbps link)

Standard TCP and a CTCP flow sharing a loss-free link



Link layer-agnostic measurements

Friendliness - lossy path
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Std TCP
CTCP
Std TCP vs Std TCP
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Std TCP
CTCP
Std TCP vs Std TCP

10Mbps link, RTT=25ms 25Mbps link, RTT=25ms
TCP and CTCP flow sharing link (solid lines), and (ii) two TCP flows sharing

link (dashed line).



Link layer-agnostic measurements

Application performance - HTTP
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Link layer-agnostic measurements

Application performance - Video streaming
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Std TCP
CTCP

25Mbps link, RTT 10ms, 60s video playout
Standard TCP (red) and CTCP (black)



802.11 wireless measurements

Testbed setup:

• Proprietary 802.11
featrures disabled

• 802.11 rate control
manual

• Cubic as standard TCP.
Sender

Receiver

Inteferer



802.11 wireless measurements



802.11 wireless measurements

Microwave oven interference
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802.11 wireless measurements

Hidden terminal setup:

• Modified 802.11 driver
to disable carrier sense

• Poisson interference
traffic Sender

Receiver

Hidden Terminal

Inteferer



802.11 wireless measurements
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Throughput vs intensity of hidden terminal interference when using standard
TCP (Cubic TCP) and CTCP over an 802.11b/g wireless link.



802.11 hot spot measurements

• Various public WiFi networks in the
greater Boston area

• Downloaded a 50 MB file from a server
located on MIT campus to a laptop

• Default operating system (Ubuntu)
settings are used for all network
parameters on client and server.



802.11 hot spot measurements
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Sheraton Hotel, Needham.

No link loss

Standard TCP, 5% loss

Coded TCP, 5% loss
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