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e Why do error-correction coding at the transport layer ?
e Congestion control on lossy paths

e Implementation & performance measurements



Why error-correction coding at the transport layer ?
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Why error-correction coding at the transport layer ?

Why not enhance error-correction at the
link layer 7 Link layer offers many
advantages:
e Link layer has access to low-level
information e.g. whether a packet loss

is due to queue overflow or channel . ). )‘

error. lossy loss-free
e Usually quick feedback, so ARQ link link
efficient

e Hop by hop encoding is generally more
efficient than end-to-end encoding
If link layer improvements are possible,
make them !



Why error-correction coding at the transport layer ?

Transport layer has some compelling practical advantages:

e No need for changes to installed
network equipment. Recent estimate is

>
1.2 billion wireless devices shipped to .' - - ).' - ).

date. lossy loss-free
link link

e What about servers, and especially
user equipment ?



Why error-correction coding at the transport layer ?

Transport layer has some compelling

practical advantages:
client server

e No need for changes to installed
network equipment ‘( > ‘
e No need for root-privilege changes < - - »*

to user equipment, just a . |

ctcp ossy ctep

user-space app proxy  link oroxy
e No need for changes to installed

servers



Why error-correction coding at the transport layer ?

Plus potential exists for considerable performance gains.
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Congestion control on

Standard congestion control approach
is window based using AIMD

cwnd number of unacknowledged
packets in flight

cwnd «— cwnd + 1 every RTT without
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Congestion control on lossy paths

e Standard approach assumes loss =

congestion ZioloeTer
g + CTCP, 0.25 BDP Buffer
e On lossy path, backoff on loss means B S Ter theory
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Congestion control on lossy paths

Modify AIMD backoff on loss to cwnd « cwnd x Bl 1zn
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Congestion control on lossy paths

Modify AIMD backoff on loss to

RT T in
cwnd «— cwnd X SR

Never ignores packet loss

Reverts to standard TCP on links
without noise losses

On lossy links yields dramatic
improvement in throughput by
avoiding cwnd collapse.

An important source of the x10-x20
thoughput gains observed.
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Congestion control on lossy paths

A hybrid loss-delay approach, well established cf Compound TCP
Builds on earlier work in H-TCP, well tested over a wide range of
network conditions
Known issues 1. Does not distinguish between:
1. A congested lossy link (where have packet losses and the RTT is
much higher than the base propagation delay)
2. A non-congested lossy link where the base RTT fluctuates. How
common are such links ?
Takes prudent approach and assumes (i) i.e. reduces send rate.

Known issues 2. On paths with a standing queue, can be difficult to
observe RTT,,;,. How common are such links ?



Link layer-agnostic measurements

Testbed setup:
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Link layer-agnostic measurements
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Link layer-agnostic measurements
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Link layer-agnostic measurements

Friendliness - loss-free path
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Link layer-agnostic measurements

Friendliness - lossy path
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Link layer-agnostic measurements

Application performance - HTTP
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Link layer-agnostic measurements

Application performance - Video streaming
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802.11 wireless measurements

Testbed setup: Receiver O
e Proprietary 802.11 4
featrures disabled /

/
e 802.11 rate control ; Inteferer
manual
Sender

e Cubic as standard TCP.



802.

11 wireless measurements
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802.11 wireless measurements

Microwave oven interference
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802.11 wireless measurements

Hidden terminal setup: Receiver O
e Modified 802.11 driver /4
to disable carrier sense /
e Poisson interference / O - )O
traffic sender () Hidden Terminal



802.11 wireless measurements

CTCP and TCP Throughput
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802.11 hot spot measurements

e Various public WiFi networks in the
greater Boston area

e Downloaded a 50 MB file from a server
located on MIT campus to a laptop

5
S Ryetisn FER T
- s
o o - @
T o

L _crartes Rivet S = ©)
The Goyphon. = Bay East ©
= owkon @ K &

Rt ‘Square.
O o g Mgy

S B0 5

KLOEZ =
Fa

e Default operating system (Ubuntu)
settings are used for all network
parameters on client and server.
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802.11 hot spot measurements
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Sheraton Hotel, Needham.

A 2653 Mbps t 542 Mbps No link loss

¥ 1.3Tmeps  [* 6.46mps Standard TCP, 5% loss
¥ 10.68 wops w 0.88 wops Coded TCP, 5% loss
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