
NEPI: Network
Experimentation

Programing Interface
Alina Quereilhac, Thierry Turletti, Walid Dabbous†

† the authors are not liable for any mistake the presenter will make

http://nepi.inria.fr

How can we make it
really simple to run ICN
experiments in the wild?

2

Experiments issues
Once you master the testbed you still have to

implement the experiment,

synchronize the resource needed for the
experiment,

detect and handle errors during execution,

collect results.

Automation alleviates these issues.

3

NEPI: Network
Experiment

Programming Interface

4

NEPI in a nutshell
NEPI is a framework to manage network
experiments

that abstracts testbed differences behind a
common interface

to automate experimentation steps.

NEPI runs on the user side (e.g., user desktop)

i.e., no need to modify the testbed.

5

Experiment automation

6

Deployment Control Results

!  Configuration resource
!  Install software
!  Synchronization start
!  Instrument resource
!  Start resource

!  Changes configuration
!  Monitor status
!  Detect errors
!  Release resources

!  Query information
!  Download results

Everything is a resource
The user interacts with the Experiment Controller
(EC), which controls the Resource Managers.

The Resource Managers (RMs) control individual
resources (1 RM per resource type)
 All RMs implement a same interface

e.g., deploy, start, stop.

An experiment is a graph of interconnected
resources.

7

A ping example

8

 from nepi.execution.ec import ExperimentController
 ec = ExperimentController()

 node = ec.register_resource("LinuxNode")
 ec.set(node, "hostname", “planetlab1.inria.fr”)
 ec.set(node, "username", “me”)

 app = ec.register_resource("LinuxApplication")
 ec.set(app, "command", "ping -c3 nepi.inria.fr")
 ec.register_connection(app, node)

 ec.deploy()

 ec.wait_finished(app)

 ec.shutdown()

Ongoing work

We (with Priya) asses the costs/benefits of CCN
overlays by deploying CCNx on PlanetLab

impact of topologies?

impact of CCN parameters?

impact of traffic patterns?

9

NEPI status
Supported testbeds:

(any) Linux host with SSH key authentication,

PlanetLab testbed,

OMF wireless testbeds (under test).

Other testbeds:

Amazon EC (should work. untested), Grid5000 (should
work. untested), ns-3 (ongoing).

Virtually any other testbed (= set of resources).

10

Trying out NEPI?
NEPI is implemented in Python.

NEPI 3.0 to be released soon (with
documentation and examples)

web http://nepi.inria.fr,

mailing list: nepi-users@inria.fr,

send an email to sympa@inria.fr with subject
SUBscribe nepi-users <your-username>.

11

NEPI: Network
Experimentation

Programing Interface
Alina Quereilhac, Thierry Turletti, Walid Dabbous†

† the authors are not liable for any mistake the presenter made

http://nepi.inria.fr

Complementary
material

13

Experiment representation
Experiments are represented as a graph of
interconnected resources.

Each resources have 3 set of properties:
attributes (e.g., configuration)

traces (e.g., stderr, stdout)

states (i.e., STARTED, STOPPED, FAILED)

14

Link

Node Node Application

A CCNx example on PlanetLab

15

 from nepi.execution.ec import ExperimentController
 ec = ExperimentController()

 node = ec.register_resource("LinuxNode")
 ec.set(node, "hostname", “planetlab1.inria.fr”)
 ec.set(node, "username", “me”)

 ccnd = ec.register_resource("LinuxCCND")
 ec.register_connection(ccnd, node)

 ccnr = ec.register_resource("LinuxCCNR")
 ec.register_connection(ccnr, ccnd)

 entry = ec.register_resource("LinuxFIBEntry")
 ec.set(entry, "host", “planetlab2.usa.org”)
 ec.register_connection(entry, ccnd)

