A registry for IPPM metrics

draft-bagnulo-ippm-new-registry-00
draft-bagnulo-ippm-new-registry-independent-00
M. Bagnulo, T. Burbridge S. Crawford, P. Eardley, A. Morton
IPPM WG – IETF87

Background

- RFC4148 defined an IPPM metric registry
- RFC6248 obsoleted RFC4148
 - it was "found to be insufficiently detailed to uniquely identify IPPM metrics... [there was too much] variability possible when characterizing a metric exactly"

New User: LMAP WG

Off-the-shelve Controller Vendor A Off-the-shelve Collector Vendor C

Control Protcol Request for Metric

Report protocol
Report metric results

Off-the-shelve MA Vendor C

Well-defined and operational metrics

- New registry: tightly defined metric with few open parameters (don't affect the nature of the test)
 - e.g. source and dest address and the like
- Less is more: reduced number of metrics proven useful
 - We require both specification AND expert review for new assignments
 - Specification covers the well defined and expert review the operational
- Side benefits:
 - Inventory of useful and used metrics
 - Comparable test results even if performed by different implementations and in different networks

The P-Type challenge

- Example: from Type-P-Round-trip-Delay to UDP_Latency
- RFC2681 defines Type-P-Round-trip-Delay
 - Open parameters include P-Type, Timeout, source and destination, time and duration.
- Support for arbitrary P-Type seems costly.
- UDP_Latency: define P-Type (IP fields, plus UDP), leave as open parameters:
 - Source and destination address and UDP ports and time

Schedulling registry

- Currently, each metric defines the sample metrics using some sample distribution
 - e.g. Type-P-Round-trip-Delay-Poisson-Stream
- However, there are a few commonly used sampling strategies with well known input parameters
 - Poisson, Periodic
- Proposal is to define a Schedulling registry that contains the used sampling strategies
- Result: defined number of schedulling strategies to be supported by implementations

Statistics

- Currently, each RFC defines some statistics for each metric
- Again, there are a few statistics that are commonly used.
 - e.g. Xth percentile mean, Xth percentile interval
- Proposal is to define a Output-Type registry with a set of well defined output types that can be specified for each metric

Other environmental constraints

- In some cases, there are additional environmental constraints that need to be specified as part of the methodology.
- Example: No-cross traffic
- Proposal to define a Environment registry with these constraints.

Registries

- The commnly used metric registry
 - Scheduling registry
 - Environment registry
 - Output-type registry
 - Metric registry

Independent Registries (option 1)

- Scheduling registry e.g. Poisson
- Environment registry No-cross-traffic
- Output-type registry Xth-percentile mean
- Metric registry UDP-Latency

 Possible drawback: explosion in the implementation side

Sub-registries

Schedulling

registry Specification Poisson RFCXXX

Output-type registry

Value	Specification
Xth-Perc-	RFC YYY
mean	

Singleton Metric registry

Value	Specification		
UDP_Latenc	RFCZZZ		
у			

Environment registry

Value	Specification
No-cross	RFCQQQ

Value	Metric	,	Schedule	Otput	Environment
UDPLat-Poisson-	UDP_Latenc		Poisson	Xth-Perc-mean	No-cross
XPercMean-NoCross	У				

Sub-registries (cont)

 Drawback: potential explosion of the regsitry (or lack of maintanance of the registry because the workload)

Changes since v00

- Metric sub-registry defined using RFC6390 format.
- Metric sub-registry now defined as:
 - Metric Name
 - Metric Definition:
 - Method of Measurement or calculation:
 - Units of Measurement.
 - Measurement Accuracy:
- Previously only defined as a pointer to the relevant spec, now include pointers to the relevant sections of the before mentioned spec