
JWS Direct Signing
ISSUE-23

Monday, July 29, 13

Goal

• Maximize the extent to which the inputs
and outputs of JOSE cryptographic
operations can be controlled by
applications, as opposed to involving
processing specific to JOSE. This allows
JOSE the flexibility to address the needs of
many cryptographic protocols.

Monday, July 29, 13

Scenario

• JWS with no protected header (thus JSON)

• What should JWS Signing Input be?

{
 “unprotected”: {
 “alg”: “HS256”,
 “kid”: “1”
 },
 “payload”: “U2lnbiBtZSE”
 “signature”: “???”
}

Monday, July 29, 13

JWS -13

OLD:
Compute the JWS Signature in the manner defined
for the particular algorithm being used over the
JWS Signing Input (the concatenation of the
Encoded JWS Header, a period ('.') character, and
the Encoded JWS Payload).

Monday, July 29, 13

JWS-13

JWS_Signing_Input
 == ‘.’ + base64(payload)
 == “.U2lnbiBtZSE”

Monday, July 29, 13

Proposed

NEW:
Compute the JWS Signing Input. If the JWS
Protected Header is present then the JWS Signing
input is the concatenation of the Encoded JWS
Header, a period ('.') character, and the Encoded
JWS Payload. If there is no JWS Protected Header,
then the JWS Signing Input is the JWS Payload
(unencoded). Compute the JWS Signature in the
manner defined for the particular algorithm being
used.

Monday, July 29, 13

Proposed

JWS_Signing_Input
 == payload
 == “Sign me!”

Monday, July 29, 13

Side by Side
OLD:
Compute the JWS Signature in the manner defined
for the particular algorithm being used over the
JWS Signing Input (the concatenation of the
Encoded JWS Header, a period ('.') character, and
the Encoded JWS Payload).

NEW:
Compute the JWS Signing Input. If the JWS
Protected Header is present then the JWS Signing
input is the concatenation of the Encoded JWS
Header, a period ('.') character, and the Encoded
JWS Payload. If there is no JWS Protected Header,
then the JWS Signing Input is the JWS Payload
(unencoded). Compute the JWS Signature in the
manner defined for the particular algorithm being
used.

Monday, July 29, 13

Complexity

• Only for JSON implementations

• Only if you accept both protected and
unprotected headers

•No change for compact-only
implementations

Monday, July 29, 13

Security

• Concern: Shifting data between protected
header and content

• For example, the following are equivalent:

• protected = “qwer”, payload = “asdf”

• protected = “” , payload = base64(“qwer.asdf”)

• Current draft prevents by only using
concatenation of encoded forms

Monday, July 29, 13

Security

• Mostly no problem for the proposed scheme

• Within each case (protected/not), no shifting
can occur

• So only need to care about switching cases

• Content slicing: payload -> header+payload

• Content fusion: header+payload -> payload

• These are fundamental to the requirements
(they also exist in CMS SignedData)

Monday, July 29, 13

Summary

• .base64(payload) vs payload

• Benefit: Support for many more use cases

• Cost:

• Complexity for some JSON
implementations (no cost for
compact-only)

• Slicing/fusion risks (as in CMS)

Monday, July 29, 13

