ZigBee IP update IETF 87 Berlin

Robert Cragie robert.cragie@gridmerge.com

Introduction

- ZigBee IP is a "super" specification for an IPv6 stack
 - Umbrella specification for a set of IETF RFCs
- Aimed at 802.15.4 MAC/PHY devices
- Route-over mesh network (multi-hop)
- Developed primarily for SEP 2.0 (Smart Energy Profile) application layer traffic to aid migration from SEP 1.0
- Certifiable platform
 PICS and Test Plan

Status July 2013

- Specification, PICS and test plan complete
 - Approved by ZigBee Alliance in February 2013
 - One or two remaining IDs in the process of becoming RFCs
- Specification Validation Event (SVE) in January 2013
 - 3 golden units
 - 2 compliant platforms

Implementation

- Can't give details for commercial reasons
 7 independent developers through the process
 - 7 independent developers through the process
- Aimed at LWIG class 2 devices
 - ~50 kiB data (RAM), ~250 kiB code (Flash)
 - draft-ietf-lwig-guidance
 - Class 1 devices may be able to act as hosts
 - Some devices have more resources and processing power (e.g. ARM9 core, MiBs RAM/Flash)
- Home-grown OS, embedded Linux

Next steps for LWIG

- Produce more detailed ID or incorporate in guidance document
 - Aim to start ID or text on completion of SVE
 - Postponed due to my limited availability to work on draft

Detail on chosen protocols

Transport layer

- TCP
 - Data plane
 - HTTP
 - HTTPS
- UDP
 - Control plane
 - PANA, MLE
 - Data plane
 - CoAP
 - Not currently proposed for SEP 2.0
 - Maybe used in other application profiles

Network Layer

- IPv6
 - RFC 2460
 - Not using IPv4
- 6LoWPAN adaptation layer
 - RFC 4944 (IPv6 over 802.15.4)
 - RFC 6282 (header compression)
- Stateless address autoconfiguration (SLAAC)
 - RFC 4862
 - Maps IPv6 addresses to link layer addresses
 - 16 and 64 bit MAC addresses
- 6LoWPAN contexts
 - ULA and/or global prefixes

Neighbor discovery

- "Classic" ND
 - RFC 4861
 - Not all features used
- 6LoWPAN ND
 - RFC 6775
 - Extends "classic" ND for LLNs and multi-link subnets
- MLE
 - draft-kelsey-intarea-mesh-link-establishment
 - Provides link information for neighbors

Routing

- RPL
 - RFC 6550
 - Route-over
 - Intermediate routers as well as border router
 - Based on Directed Acyclic Graph (DAG)
- MRHOF objective function
 RFC 6719
- Trickle multicast
 - draft-ietf-roll-trickle-mcast

Security (1)

- Link layer security
 - 802.15.4 frame security (AES-CCM)
 - Global network key
- PANA (EAP transport)
 - RFC 5191 (PANA)
 - RFC 6345 (PANA relay)
 - RFC 6786 (encryption AVP)
 - Carries EAP in UDP datagrams
 - Convenient for 6LoWPAN header compression

Security (2)

- EAP-TLS (EAP method)
 - RFC 5216
 - Carries TLS records for authentication and key establishment
- TLS cipher suites
 - RFC 5487 (pre-shared key with AES-CCM)
 - c/w Wi-Fi WPA/WPA2 PSK passphrase
 - draft-mcgrew-tls-aes-ccm-ecc-05 (elliptic curve DH and ECDSA with AES-CCM)
 - In conjunction with device certificate
 - Also used in SEP 2.0

Additional IETF protocols developed specifically for ZigBee IP

- MLE (Mesh Link Establishment)
 - Transfer of link costs between neighbors
 - Improved link costs for RPL metrics
 - Transfer of frame counters between neighbors
 - Freshness checking and nonce consistency
 - Dissemination of network-wide information, e.g. beacon payload, PAN ID, channel
- PANA relay
 - Enables PANA for multihop networks
- PANA encryption extensions
 - Secure delivery of configuration parameters

Restrictions to meet resource constraints

- 6LoWPAN 4 contexts plus stateless (64-bit and 16-bit address)
- RPL non-storing mode
 - Resources required mainly at DAG root
 - Source routing down the DAG
- TLS only two cipher suites
 - Pre-shared key
 - Elliptic curve for processing speed up and memory saving
- Buffer restrictions for pending data to sleeping hosts

Other implementation efficiencies

- Holistic approach to combining protocols
- AES-CCM used universally at many layers
- RPL, ND, MAC all have concepts of neighbors and stored addresses
- Limit the storage by linking tables from different protocols together
- Cross-layer management more complex API whereby all protocols have access to other data and can use it accordingly