
Integrated Top-down Design &
Diagnostic Software Toolkit for

Minimizing Network Complexity

Xin Sun

xinsun@cs.fiu.edu

Florida International University

mailto:xinsun@cs.fiu.edu

Research Direction One
Eliminating unnecessary complexity of new

networks:

comprehensive complexity-aware top-

down design

Categories of Complexity

• Complexity inherent to the objectives a network
needs to achieve
– E.g., networks that implement sophisticated

reachability policies V.S. all-open networks

• Complexity inherent to the underlying platform,

available mechanisms, etc.
– E.g., centralized VS. distributed control plane

• Complexity specific to a particular design

Network Design Complexity

• Given the set of objectives to meet, and given
the underlying platform & a set of
mechanisms

• There are usually multiple possible designs
that are all correct…

• …But some designs are unnecessarily more
complex than others

An Illustrating Example

 ……

can only be accessed by

Three VLANs can be created.

Available IP blocks: 10.0.1/24, 10.0.2/24, 10.0.3/24

H1—H20

H21—H40

H41—H60

H61—H80

H81—H100

VLAN Background

• Extensively used in enterprise networks.

• A VLAN groups end hosts in disparate locations into a

single broadcast domain
– By constructing a spanning tree that spans all the hosts

• A VLAN becomes a subnet at layer-3, and is assigned a
continuous IP block. (typically /24)

• Total number of VLANs is bounded by both hardware
capacity, and available IP blocks

Design #1

 ……

Permit H1
…
Permit H20
Permit H41
…
Permit H60
Permit H81
…
Permit H100
Permit VLAN 30

VLAN 10
(10.0.1/24)

VLAN 20
10.0.2/24

VLAN 30
(10.0.3/24)

H1—H20

H21—H40

H41—H60

H61—H80

H81—H100

too many rules at
individual IP level

Design #2

 ……

VLAN 10
(10.0.1/24)

Permit 10.0.1/24
Permit 10.0.3/24 VLAN 20

10.0.2/24

VLAN 30
(10.0.3/24)

Design #2

 ……

VLAN 10
(10.0.1/24)

Permit 10.0.1/24
Permit 10.0.3/24 VLAN 20

10.0.2/24

VLAN 30
(10.0.3/24)

Switchport mode trunk allow 10

 + Much fewer rules, all at
subnet level

 - Too many VLAN trunk links

VLAN Design #3

 ……

Permit 10.0.1/23

VLAN 10
(10.0.1/24)

VLAN 20
10.0.3/24

VLAN 30
(10.0.2/24)

 + Much fewer VLAN trunk links

+ Still allow rules written at subnet
level

 + Better addressing scheme -> better
prefix aggregation

Insight from the Example

• Given the same design objectives to be achieved,
and the same set of available mechanisms, there
are multiple correct designs. However some
designs are unnecessarily more complex than
others

• Both VLAN design & addressing scheme have
impact on the final packet filter complexity.
– The designs of VLAN, address allocation & packet filter

are interconnected

Current Practice

• Network design remains a largely ad-hoc process
– Operators are guided by simple rules-of-thumb, past experiences and

intuition

• Considered network design as consisting of isolated “stages” or

“tasks”
– Focusing on one stage at a time, and trying to optimizing that stage

independently…
– …Without systematically considering how the design decision made in

one stage will impact the complexity of other stages
– E.g. 1, some design guidelines recommend always grouping nearby

hosts into VLANs
– E.g. 2, we observed one network maintains a strict mapping between

prefix and VLAN ID (i.e., VLAN 10 -> a.b.10/24, VLAN 20-> a.b.20/24,
etc.)

Our Approach: complexity-aware
comprehensive Top-down Design

• A systematic design approach that Jointly considers
interconnected design tasks to minimize complexity
– By modeling the impact of one task on other tasks

• Preliminary work applied this approach to:
– VLAN design & packet filters

– addressing scheme & packet filters

• Objectives
– Minimizing complexity in the resulting network (measured by total # of filter

rules & VLAN trunk links)

– Ensuring reachability policies are correctly enforced.

• Constraints
– Total number of VLANs

– Available IP space

Our Approach: complexity-aware
comprehensive Top-down Design

• A systematic design approach that Jointly considers
interconnected design tasks to minimize complexity
– By modeling the impact of one task on other tasks

• Preliminary work applied this approach to:
– VLAN design & packet filters

– addressing scheme & packet filters

• Objectives
– Minimizing complexity in the resulting network (measured by total # of filter

rules & VLAN trunk links)

– Ensuring reachability policies are correctly enforced.

• Constraints
– Total number of VLANs

– Available IP space

Construct the Weighted Graph

of filter rules: 16

V8 V6 C7 V5 V2

Permit V2
Permit V6

Permit V1
Permit V2
Permit V5
Permit V8

Permit V1
Permit V2
Permit V8

Permit V1
Permit V2
Permit V6
Permit V7

Permit V6
Permit V7
Permit V8

V1

V2

V7
V6

V8

V5

• Construct a weighted graph.
• Two VLANs have an edge if they

are of the same prefix length
• Weight of an edge is the # of

filters that both VLANs appear &
can be potentially aggregated.

1

2

2

2
1

3 2

2

1

1

1

1

V1

Available IP blocks:
10.0.1/22
10.0.5/23
(6 /24 blocks)

Find the Maximum Weighted Matching

of filter rules: 16

V8 V6 C7 V5 V2

Permit V2
Permit V6

Permit V1
Permit V2
Permit V5
Permit V8

Permit V1
Permit V2
Permit V8

Permit V1
Permit V2
Permit V6
Permit V7

Permit V6
Permit V7
Permit V8

V1

Available IP blocks:
10.0.1/22
10.0.5/23
(6 /24 blocks)

V1

V2

V7
V6

V8

V5

1

2

2

2
1

3 2

2

1

1

1

1

• Matching: a subset of edges such that
none of the selected edges share a
common vertex

• Maximum weighted matching: a matching
for which the sum of the weights of the
selected edges is as large as possible.

• Polynomial time [O(n3)] to find MWM.

Find the Maximum Weighted Matching

of filter rules: 16

V8 V6 C7 V5 V2

Permit V2
Permit V6

Permit V1
Permit V2
Permit V5
Permit V8

Permit V1
Permit V2
Permit V8

Permit V1
Permit V2
Permit V6
Permit V7

Permit V6
Permit V7
Permit V8

V1

Available IP blocks:
10.0.1/22
10.0.5/23
(6 /24 blocks)

V1

V2

V7
V6

V8

V5

1

2

2

2
1

3 2

2

1

1

1

1

• VLANs sharing a selected edge should be
assigned aggregate-able prefix addresses
to maximize the reduction of rules.

- 6

This Process Continues (to Aggregate at Larger
Prefixes)

of filter rules: 16 - 6

V8 V6 C7 V5 V2

Permit V2
Permit V6

Permit V1
Permit V2
Permit V5
Permit V8

Permit V1
Permit V2
Permit V8

Permit V1
Permit V2
Permit V6
Permit V7

Permit V6
Permit V7
Permit V8

V1

Available IP blocks:
10.0.1/22
10.0.5/23
(6 /24 blocks)

V1,
V2

V6,
V7

V5,
V8

1 1

This Process Continues (to Aggregate into Larger
Prefixes)

of filter rules: 16 - 6

V8 V6 C7 V5 V2

Permit V2
Permit V6

Permit V1
Permit V2
Permit V5
Permit V8

Permit V1
Permit V2
Permit V8

Permit V1
Permit V2
Permit V6
Permit V7

Permit V6
Permit V7
Permit V8

V1

Available IP blocks:
10.0.1/22
10.0.5/23
(6 /24 blocks)

V1,
V2

V6,
V7

V5,
V8

1 1
• Assign 10.0.1/22 to V1, V2, V6, V7

 assign 10.0.1/23 to V1, V2, and 10.0.3/23 to
V6, V7

• Assign 10.0.5/23 to V5, V8

- 1

Summary

• Focused on eliminating unnecessary complexity in the
design of a network
– Resulted from the ad-hoc, complexity-agnostic design process

• Our approach: a systematic top-down design framework
that..
– Jointly considers interconnected design tasks
– Explicitly considers complexity in the resulting design
– Overall approach is to formulate the design process as a set of

optimization problems (enables automating the design process)

• Presented one building block of this top-down design
framework

Research Direction Two
Lowering complexity of existing networks:

complexity root-cause diagnostics

(in collaboration with Michael Behringer, Alexander Clemm
and Alberto Prieto @ Cisco)

Toolkit for Complexity Root Cause
Diagnosis

• Given an existing network, we want to find out the characteristics in its
design that introduce most of the operational complexity
– E.g., a flat mesh-like topology is likely to make installing packet filters harder

than a clean hierarchical topology
– E.g., a flat topology is also likely to make troubleshoot connectivity issues

harder.

• Overall approach is to automatically correlate the observed symptoms of
complexity, to identify the root causes in the underlying design
– Step 1: assess the complexity of the network. Key idea is to run a set of

benchmark operations.
– Step 2: correlate the observed symptoms of complexity to identify the root

causes

• Main challenge: there could potentially exist many causes of complexity,
and operators won’t have time to fix all of them
– Solution: rank the identified causes, based on (i) their impact on complexity;

and (ii) the cost of fixing each of them.

• Many research questions are to be answered, and we are currently
addressing these questions as our ongoing work.

Designing Benchmark Operations to
Assess Complexity

• Benchmarks must reflect common
components in a variety of operations which
contribute most of the complexity

• Two common components we identified:

– Information collection

– Setting up parameters

Benchmark for Information Collection

• Consider an operation of “blocking communication
between Engineering & Financial”.

• Operator needs to find out:
– The IP address space of both departments (to derive filter

rules)
• Not in configuration, but documented/maintained separately, e.g.,

in an external database

– All the possible paths between the two departments (to
determine the filter placement)
• Obtain pair-wise device connectivity through CDP/LLDP, then

manually construct the end-to-end paths

Benchmark for Parameterization

• The configuration process can be viewed as (i)
the procedure itself plus (ii) setting up certain
parameters

– The procedure part can be easily automated
through use of templates

– The parameterization part must be done
manually, and thus contribute most of the
complexity in configuration.

