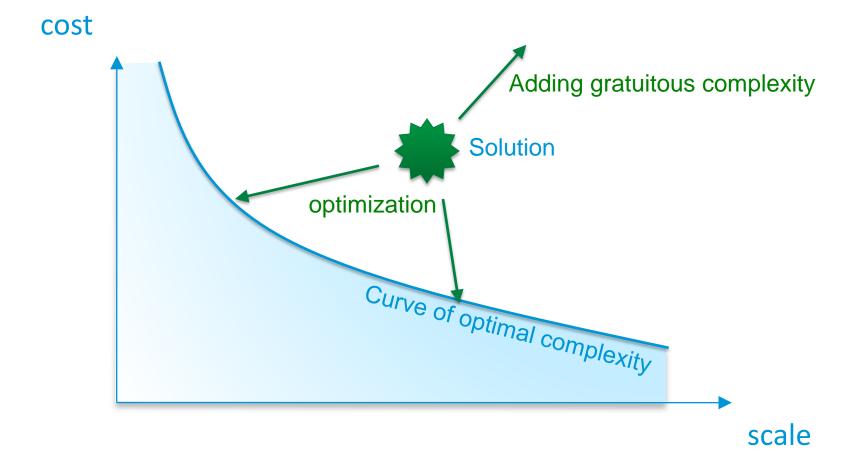


Complexity Framework Discussion

Michael Behringer (ed) 29 July 2013


draft-irtf-ncrg-complexity-framework-00

1. Introduction
2. Current Understanding of Network Complexity
2.1. The Behavior of a Complex Network
2.2. Robust Yet Fragile
2.3. The Complexity Cube
3. Towards Defining Network Complexity
3.1. General Observations
3.2. The Problem Space
3.3. Technical Debt 4
3.4. Layering considerations
4. Possible Directions of Research
4.1. Definitions and Metrics 5
4.2. Comparative Analysis
4.3. Containment, Control or Reduction of Complexity 6
4.4. Use Cases
5. Security Considerations
6. Acknowledgements 7
7. References
Authors' Addresses

Summary

- Each network has N design criteria / metrics
 Explicit: Cost, bandwidth, delay, ...
 Implicit: Extensibility, de-bug-ability, ...
- We see those criteria are axes in an N-dimensional graph Each network can be mapped into this space
- There are tradeoffs: You can't optimise all axes

Tradeoffs and Complexity

Source: John Doyle

Obvious Metrics

Cost

How much does the network cost to build (capex) and run (opex)

• Bandwidth / delay / jitter

Traffic characteristics between two points (average, max, ...)

Configuration complexity

How hard to configure and maintain the configuration

- Susceptibility to Denial-of-Service
 How easy is it to attack the service
- Security (confidentiality / integrity)
 How easy is it to sniff / modify / insert the data flow
- Scalability

To what size can I grow the network / service

Other Metrics

Extensibility

Can I use the network for other services in the future?

Positive example: IP

Negative example: Traditional telephony

• Ease of troubleshooting

How hard is it to find and correct problems? Negative example: Manually configured IPsec overlay networks Positive example: Dynamic IPsec overlay networks

Predictability

If I change a parameter, what will happen? Negative example: Configuration

Clean failure

When a problem arises, does the root cause lead to deterministic failure Negative example: Coax Ethernet; browser certificate problems Positive example:

Metrics from draft-retana-network-complexity-framework-00

- Control Plane State verses Optimal Forwarding Paths (or it's opposite measure, stretch)
- Configuration State verses Failure Domain Separation
- Policy Centralization verses Optimal Policy Application
- Configuration State verses Per Hop Forwarding Optimization
- Reactivity verses Stability

Ideas / Discussions

Include text to describe the various forms (?) of complexity
 Operational complexity

deployment complexity; configuration complexity, trouble shooting Network system complexity

s/w complexity; h/w complexity; Protocol / algortihm complexity Management system complexity

OSS systems, etc.

- Intrinsic complexity of the system vs complexity from the user base?
- Include the various scales of metrics
 Illustrate trade-offs between various scales

- What constitutes complexity?
- Where is it?
- What does it depend on?
- How is it managed?
- How do users interact?

• What constitutes complexity?

State

config / protocol state / OS state

Churn

Algorithms

packet exchanges / state machine complexity / ...

- Where is it?
- What does it depend on?
- How is it managed?
- How do users interact?

- What constitutes complexity?
- Where is it?

Topology

various network elements / NMS system / AAA server / ...

Layer

```
Layer 1, 2, 3, 4, app layer, ...
```

- What does it depend on?
- How is it managed?
- How do users interact?

- What constitutes complexity?
- Where is it?
- What does it depend on?
 local depencencies
 network wide
 network external
- How is it managed?
- How do users interact?

- What constitutes complexity?
- Where is it?
- What does it depend on?
- How is it managed?
 Configuration
 Troubleshooting
 - Monitoring
 - System Integration
- How do users interact?

- What constitutes complexity?
- Where is it?
- What does it depend on?
- How is it managed?
- How do users interact?
 Open loop control
 Local configuration (PC)

Mapping Old Draft \rightarrow New Draft

2. Current Understanding of Network Complexity 2.1. The Behavior of a Complex Network 2.2. Robust Yet Fragile 2.3. The Complexity Cube 3. Towards Defining Network Complexity 3.1. General Observations 3.2. The Problem Space . . 3.3. Technical Debt . . 3.4. Layering considerations . 4. Possible Directions of Research 4.1. Definitions and Metrics 4.2. Comparative Analysis 4.3. Containment, Control or Reduction of Complexity 4.4. Use Cases

- 1. Introduction
- 2. General Considerations.
- 3. Structural complexity
- 4. Components of complexity state (config/protocol/OS) churn
 - algorithms
- 5. Location topology
- layer

Nec

- 6. Dependencies
- 7. Management interaction configuration troubleshooting monitoring
 - system integration
- 8. User interaction
- > 9. Examples / how to use this doc.