Time Capability in NETCONF

draft-mm-netconf-time-capability-00

http://tools.ietf.org/html/draft-mm-netconf-time-capability

Tal Mizrahi, Yoram Moses Technion – Israel Institute of Technology

NETCONF, IETF Meeting, Berlin, July 2013

Overview

- This draft defines the **time** capability.
- Allows time-triggered configuration updates.
- Client can attach scheduled time of execution to each RPC.
- Server can attach timestamp to RPC reply.
- This draft is part of a work-in-progress research of time-based configuration updates.
- A similar extension was proposed to the Open Networking Foundation (ONF) in the context of OpenFlow.

Example 1: Switch to Candidate Datastore

- Apply the candidate datastore to all devices.
- Send n commit messages.

Example 2: Reconfigure Port Rate

Example 3: Routing Change

- I2RS: rapid and dynamic routing changes (e.g., <u>http://tools.ietf.org/html/draft-atlas-i2rs-problem-statement-00</u>).
- This example: update the route to AS1.

Scheduled Operations

• RPC may include <scheduled-time> element.

Reporting the Execution time

RPC may include <get-time> element.
→ RPC reply includes <execution-time>.

Scheduling and Reporting

- RPC may include both <get-time> and <scheduled-time>.
- Client receives feedback about whether the operation was executed as scheduled.

Summary

- Time-based updates can be used for:
 - Reducing transition period.
 - Physical layer updates.
 - Time-based sequence of ordered updates.

Issues Raised on the Mailing List

Question/comment	Response
Only relevant to <commit> or <edit- config> on :writable-running.</edit- </commit>	May also be relevant to <get>, <lock>, <unlock>, and future operations.</unlock></lock></get>
YANG date-and-time is better time parameter than 'seconds since 1970'.	IETF uses various time formats. We chose PTP time format.
Accuracy	Provision for a higher resolution than is currently needed
draft-kwatsen-conditional-enablement	draft-mm-netconf-time-capability allows: -Timed update for all RPCs. -Coordinated commit / get. -Sub-second resolution.

Issues Raised on the Mailing List (2)

Question/comment	Response	
How would you see this working when supporting the configuration of a set of network elements in a robust and transaction-oriented way, where the operation should complete on all devices or be fully reversed?		
A better solution would be an immediate <rpc-reply> (scheduled OK) and the execution results sent in a <notification>.</notification></rpc-reply>	To be addressed in	
Does access control get checked twice? Clients should not be able to schedule operations they are not permitted to execute.	next urait	
What if a session is lost or closed before its scheduled operation is started?		
What if the server reboots while operations are pending?		
How does a client cancel an operation?		
Can client A cancel operations for client B, assuming client A is allowed to invoke <kill-session>?</kill-session>		

History and Next Steps

- Draft 00 July 2013.
- Next step: consider adding this topic to the WG charter.

THANKS !

Further Reading

 Mizrahi, T., Moses, Y., "Time-based Updates in Software Defined Networks", the second workshop on hot topics in software defined networks (HotSDN), to appear, 2013.

http://tx.technion.ac.il/~dew/TimeSDN.pdf

 Mizrahi, T., Moses, Y., "Time-based Updates in OpenFlow: A Proposed Extension to the OpenFlow Protocol", Technion - Israel Institute of Technology, technical report, TR-1301, 2013. <u>http://tx.technion.ac.il/~dew/OFTimeTR.pdf</u>

BACKUP SLIDES

Example 4: Queue <max-rate> Reconfiguration

Configuration 1Configuration 2 $r_A = 3 \text{ Gbps}$ $r_A = 8 \text{ Gbps}$ $r_B = 7 \text{ Gbps}$ $r_B = 2 \text{ Gbps}$

Priority A	r _A	r _A	r _A	
	Switch 1	Switch 2	 Switch n	
Priority B	r _B	r _B	r _B	

Using time: configuration point sends an updated <max-rate> to the n switches, scheduled to time T.

Example 5: Spanning Tree Reconfiguration

