draft-flach-tcpm-fec-00

T. Flach, N. Dukkipati, Y. Cheng, B. Raghavan

TCP Instant Recovery: Incorporating

TCPM WG, IETF 87, 30 Jul 2013

Introduction

- Recover lost segments instantly without requiring retransmissions
- Motivation
 - Web transfers are short and finish within a few round-trip times (RTT)
 - Detecting packet loss can take multiple RTTs, plus at least one RTT for recovery
- Goals
 - Reduce tail latency
 - Scale loss recovery with bandwidth
 - Trade bandwidth for latency

Design Rationale for TCP Instant Recovery (TCP-IR)

- No major TCP implementation supported redundant transmissions at time of design
- Design choices made based on measurements and observations of Internet loss patterns:
 - If a flow experiences loss, often only one or two consecutive packets are lost
 - Loss often happens at the tail of a burst
- We can deal with these loss patterns, even when using a simple coding scheme like XOR
- Need to be able to cope with middlebox interference

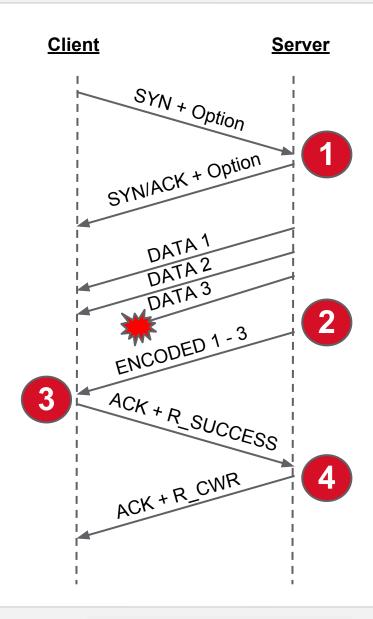
TCP-IR: The Sender Side

- Newly transmitted segments are encoded in a MSS-length segment
- Encoding done along MSS byte boundaries → guarantees that a receiver can instantly recover any single packet loss
- TCP-IR packet header fields:
 - Uses same sequence number as first byte it encodes
 - TCP-IR option stores encoding length, and has the ENCODED flag set to signal that the packet carries encoded payload
- No reliability is provided for TCP-IR segments
- All packets need to carry the TCP-IR option to ensure that encoded packets can always be distinguished from regular packets

TCP-IR: The Receiver Side

- TCP-IR packets are detected by checking the ENCODED flag in the TCP-IR option
- If a packet in the encoding range is lost, it is recovered using the TCP-IR packet and the other encoded packets buffered by the receiver
- Successful and failed recoveries are signaled to the sender:
 - Congestion control is enforced (similar to ECN)
 - Triggering retransmission of lost packets

Protocol Overview


1

2

- Negotiation during initial handshake
- Delayed transmission of encoded packets
- 3
- Signaling of successful and failed recoveries

Congestion window reduction upon successful recovery

Performance Results

- Prototype experiments in local testbed using netem, dummynet, and Web page replay to emulate file transfers and web page downloads
- Short transfer latency reduced by 28% in the 90th percentile
- Web page downloads take 15% less time in the 90th percentile
- Performance loss for:
 - Long transfers (existing mechanisms are suitable enough to deal with loss)
 - Loss-free transfers (wasting part of the congestion window to transmitting redundant segments)

Discussion

- Applicability of this scheme across the Internet
 - Mice vs. elephant flows
- Accounting for redundant segments by the congestion window
- Middlebox issues we need to work around?
 - Selectively stripping TCP options
 - Rewriting ACK numbers (due to sequence holes)
 - Rewriting payloads (e.g. FTP headers)
 - Packet coalescing / splitting
 - 0 ...

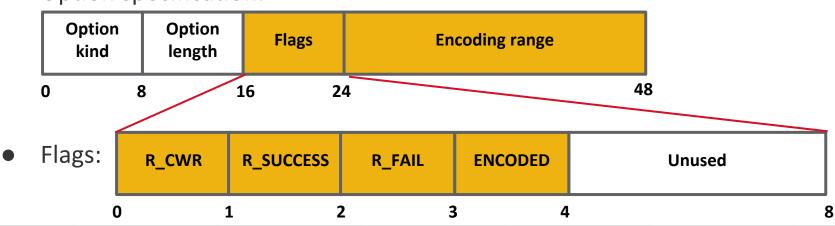
Pointers

- "Reducing Web Latency: the Virtue of Gentle Aggression" (SIGCOMM '13, to appear): <u>http://research.google.com/pubs/pub41217.html</u>
- Prototype implementation:
 Will be published soon at code.google.com
- This presentation (feel free to add comments): <u>http://goo.gl/4hgFOV</u>

Additional Slides

Negotiation

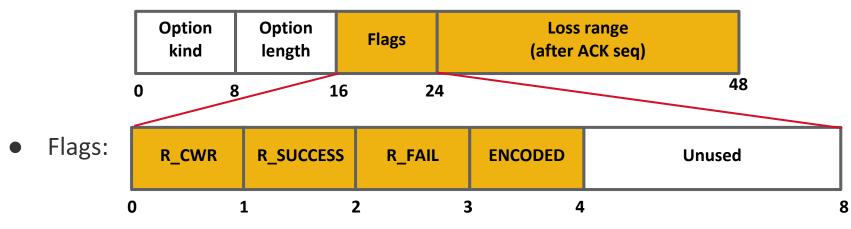
- Exchange of TCP-IR option during initial handshake
- TCP-IR is only enabled, if:
 - SYN carries the short TCP-IR option specifying the requested encoding type
 - SYN/ACK responds with same TCP-IR option value
 - Every future packet carries the TCP-IR option
- Option specification:


	Option	Option	Encoding
	kind	length	type
C	3 (3 :	16 24

Prototype currently supports regular and interleaved XOR encoding.

Encoding and sending data

• TCP-IR packet(s) generated after data in the write queue is transmitted


- All previously unencoded data is encoded in a block of MSS bytes
- Each TCP-IR packet uses the sequence number of the first encoded byte
- TCP-IR option signals the encoding range (allows to calculate the sequence number of the last encoded byte) and carries an ENCODED flag
- Transmission delayed to reduce drop probability

• Option specification:

Acknowledgements

- Successful recovery
 - Treated similar to a successful fast retransmit
 - Sender should reduce congestion window and continue in avoidance mode
 - Notification similar to explicit congestion notification (ECN)
- Failed recovery
 - TCP-IR packet already carries information about transmitted sequences
 - Notification of the sender which sequence ranges were lost
 - Sender can mark the corresponding buffers
- Option specification:

Interaction with Middleboxes

Issue	(Possible) Solution
Sequence number translation	Relative sequence numbers
Removal of non-standard TCP options	Negotiate option usage and enable option for every packet carrying data
Buffering of out-of-order packets	None (Fast recovery + TCP-IR without impact)
Rewriting acknowledgements number to match state of middlebox	Retransmit recovered data and suppress DSACK block in the acknowledgement
Rewriting payloads for previously seen sequence ranges	Checksum TCP-IR payload
Packet coalescing / splitting	Signal sequence range with encoded payload

Instant Recovery (IR) on different layers

- Application layer
 - Applications can selectively protect important parts of data
 - If reliable transport layer protocol is used, redundant packets are recovered
 - Does not know which packets are prone to losses
- Transport layer
 - Has necessary data to configure and tune IR (e.g. data about packets with higher loss probability, congestion window size, loss rate, RTT, ...)
 - Additional protocol complexity (e.g. single sequence number space, packet tampering by middleboxes, ...)
- Network layer
 - Can provide protection across multiple higher-layer connections
 - IR data can be transmitted out-of-band
 - Requires additional buffering of higher-layer packets