draft-welzl-rmcat-coupled-cc-01 Coupled Congestion Control for RTP Media

Michael Welzl, Safiqul Islam, Stein Gjessing

Networks and Distributed Systems Group

Department of Informatics

University of Oslo

A note about evaluations

As a starting point, considering

greedy and non-greedy flows

Evaluation with realistic RMCAT traffic planned as next step

Why do we need coupled cc?

- Each individual data stream (flow) has its own congestion control mechanism
 - Hence, M flows, with their own congestion control modules, trying to reach a certain fairness lead to:
 - More queue growth
 - More delay
 - More packet drops
 - Fairness problems in case of heterogeneous RTTs

How to solve this

- This can be solved by using a single Congestion Control(CC) instance for the flows
 - To begin with, only for flows initiated from the same sender sharing the same bottleneck
- Congestion Manager, RFC 3124, had some unresolved issues, and was complicated to implement
 - We suggest something more in the style of RFC 2140 (but rate based, and with more features)

Flow State Exchange (FSE)

- A passive entity which stores information from the flows, calculates rate and provides this calculated rate back
- Minimal change to existing CC: each time it updates its sending rate (New_CR), the flow calls update (New_CR, New_DR), and gets the new rate

FSE

- □ Flow Numbers, #
- Flow Group Identifier, FGI
- Priority P
- Calculated Rate, CR
- Desired Rate, DR

#	FGI	Р	CR	DR	Rate
1	1	1	6	8	6
2	1	0.5	1	1	1

FSE maintains S_CR (which is meant to be the sum of the calculated rates) and TLO (Total Leftover Rate) per FG.

- Flow 1 experienced congestion, causing S_CR to drop from 11 to 9.
- Let assume that flow 2 has sent an update to the FSE.
- For all the flows in its FG (including itself), it calculates the sum of all the calculated rates, new_S_CR. Then it calculates the difference between CR(f) and new_CR, DELTA.

for all flows i in FG do new_S_CR = new_S_CR + CR(i) end for DELTA = new_CR - CR(f)

#	FGI	Р	CR	DR	Rate
1	1	1	6	8	6
2	1	0.5	1	1	1

$$S_CR = 9$$
, and $TLO = 0$

$$New_CR = 2$$
, $new_DR = inf$

New_S_CR = 7 DELTA = 2 - 1 = 1

□ It updates S_CR, CR(f) and DR(f).

CR(f) = new_CR if DELTA > 0 then S_CR = S_CR + DELTA else if DELTA < 0 then S_CR = new_S_CR + DELTA end if DR(f) = min(new_DR,CR(f))

#	FGI	Ρ	CR	DR	Rate
1	1	1	6	8	6
2	1	0.5	2	2] 1

CR(f) = 2

Delta positive, $S_CR = 9 + 1 = 10$

DR(f) = 2

It calculates the leftover rate TLO, removes the terminated flows from the FSE and calculates the sum of all the priorities, S_P.

```
for all flows i in FG do

if P(i)<0 then

delete flow

else

S_P = S_P + P(i)

end if

end for

if DR(f) < CR(f) then
```

 $TLO = TLO + (P(f)/S_P) * S_CR - DR(f))$ end if

#	FGI	Ρ	CR	DR	Rate
1	1	1	6	8	6
2	1	0.5	2	2	1

$$S_CR = 10$$
, and $TLO = 0$

$$S_P = 1.5$$

FGI P CR DR Rate It calculates the sending rate. 8 6 1 6 Rate = min(new DR, (P(f)*S CR)/S P + TLO) 2 0.5 if Rate != new DR and TLO > 0 then TLO = 0 // f has 'taken' TLO $S_CR = 10$, and TLO = 0end if It updates DR(f) and CR(f) with Rate. Rate = min (inf, 0.5/1.5 * 10 + 0) = 3.33 if Rate > DR(f) then DR(f) = 3.33, CR(f) = 3.33DR(f) = Rateend if CR(f) = Rate

Simulation Results

Priority

13

Fairness

Fairness Index- for 2 flows

Fairness Index- for 3 flows

Fairness

Benefits From The Non-Greedy Flows

Simulation Results

Average Queue Length – 2 Flows

Packet Loss Ratio – 2 Flows

Throughput for 2 flows

Future plans

We want to keep the FSE as simple as possible

- Trying passive for now see if the problems are due to TFRC, or require other changes to the algorithm
- Else, we go for (slightly) active
 - When congestion is noticed by a flow, FSE immediately informs all other flows in the same FSE

Backup Slides

Fairness Index – 2 flows

23

Fairness Index – 3 Flows

Fairness Index

Fairness Index – 4 flows

Fairness Index – 5 Flows

Throughput – 2 Flows

Throughput – 3 Flows

Link Utilization of FSE Over Link Utilization Without FSE

Throughput – 4 Flows

Link Utilization of FSE Over Link Utilization Without FSE

Throughput – 5 Flows

Link Utilization of FSE Over Link Utilization Without FSE

Exceeding Bottleneck – 2 Flows

of times exceeding bottleneck

Exceeding Bottleneck – 3 Flows

of times exceeding bottleneck

Exceeding Bottleneck – 4 Flows

Exceeding Bottleneck – 5 Flows

of times exceeding bottleneck

Benefits from the non-greedy flows

Two Flows