
1

Formal Verification for
Software-Defined

Networking

Myung-Ki Shin
ETRI

mkshin@etri.re.kr

SDN RG Meeting@IETF 87 – Berlin, Germany

Compiler-based SDN

2

Controller
OpenFlow
protocol

SDN
Device

Apps
(High-level Programming + Compiler + Debugger)

NBAPIs

A Compiler that translates a high level
language in which 3rd Parties as well as
Operators define what they want from the
network and Compiles it into low level
instructions (e.g., OF primitives) for the data
plane. (Source- Kireeti Kompella@IETF85).

Why should we verify ?

– No loops and/or blackholes in the
network

– OF rule consistency between multiple
applications on a controller

– Logically different networks should not
interfere with each other (e.g., traffic
isolation)

– New or update configurations conforms
to properties of the network and do
not break consistency of existing
networks (e.g., network updates)

3

POX Controller

route.py
load_balance.py

firewall.py

SDN Switch ...

modify-
state()

• To check consistency and safety of network configurations on
virtual and physical resources

(E.g.) multi-apps on a controller
app1 – route.py / app2 – firewall.py à OF rule conflict

SDN Invariants
• Basic network properties
– No loop
– No blackhole (e.g., packet loss)

• SDN-specific properties
– OF rule consistency between multiple applications
– Dynamic info/statistics consistency (e.g., flow, port, QoS,

etc.)
– Consistency with legacy protocols (e.g., STP)

4

Our Approach:

Formal Verification
• Two Verification Modes

– Runtime symbolic verification
– Off-line symbolic verification

• Formal verification is not visible to operators

5Off-line symbolic verification Runtime symbolic verification

2. Formal
Verification

Theorem
Proving…..

1. Execution
(SDN Controller)

SDN Data plane
(heterogeneous devices,

switches, etc.)

Static
Checking

Applications (Python, Java, C, Ruby, etc.)

Model
Checking

2. Formal
Verification

Theorem
Proving …..

1. Execution
(SDN Control Emulator)

Static
Checking

Applications (Python, Java, C, Ruby, etc.)

Model
Checking

Verified Applications

What is Formal Verification ?
• Definition from academia

– A formal description is a specification expressed in a language
whose semantics are formally defined, as well as vocabulary and
syntax.

– The need for a formal semantic definition means that the
specification language must be based on logic, mathematics, etc.,
not natural languages.

• Formal verification
– The act of proving or disproving the correctness of designs or

implementations with respect to requirements and properties
with which they must satisfy, using the formal methods or
techniques

6

Our Verification Tool Set for
SDN (VeriSDN)

7

OpenFlow Flow Table

pACSR description

STG
(Symbolic Transition Graph)

Verification Results
(Boolean Expression)

• Overall Process
– Flow table (OpenFlow) is translated

into pACSR descriptions
– pACSR descriptions are fed into

VeriSDN Tools
– In VeriSDN, Symbolic Transition

Graph (STG) is generated and various
property verification algorithms will
be directly applied on STG

– The result will be boolean expression
represented as either BDD or CNF,
that show the condition that satisfies
the given property

Property Verifier

pACSR Generator

pACSR to STG
translator

CPS vs. SDN
• ACSR was developed for formal verification of real-time

embedded systems and CPS (Cyber Physical Systems).
– CPS is smart networked systems with embedded sensors, processors

and actuators that are designed to sense and interact with the physical
world.

– E.g., Blackout-free electricity generation and distribution; zero net
energy buildings and cities; near-zero automotive traffic fatalities and
significantly reduced traffic congestion;
• Guarantee correctness of safety-critical applications for CPS

• In both CPS and SDN,
– Software is the key (It’s the software that determines system/network

complexity)
– There are the same issues on verification of software and its modeling

(behaviors).
8

ACSR (Algebra of Communicating
Shared Resources)

• Data Types
– Basic : Integer, Event Label, Resource Name, Process
– Composite : Set, Action, Event, Pair

• Operators and Expressions
– Expressions, Index Definitions, Operand Notation, Precedence and Associativity
– Integer : Arithmetic, Relational, Boolean, Miscellaneous
– Sets
– Process : Prefix, Composition, Context, Miscellaneous

• Commands
– Miscellaneous, Binding Process Variables, Queries, Process Equivalence Checking,

Process Interpretation, Interpreter Commands
• Preprocessor

– Token Replacement, Macros, File Inclusion, Conditional Compilation ..
9

ACSR is a formal language which has notion of Resource, Time, and Priority

pACSR
• pACSR stands for packet based ACSR
• pACSR extends ACSR as follows

– Packets are passed as value (value passing)
– Parameters are also packets (parameterized process algebra)
– Predefined predicates and functions are the first class features

10

P(x) := matchSrcIP(x,sip)àch!x.nil
S := ch?y.nil
Sys := (P(x) || S)/{ch}

predefined predicate
sending
packet

receiving
packetparallel composition

packet

Symbolic Verification Example
(OpenFlow 1.3.1 - Flow Table & Topology)

11

Matching Priority Counter Action Set Timeout Cookies

S1 in_port1(ch1), ip_src: 10 out_port3(ch3)

in_port2(ch2), ip_src: 10 out_port3(ch3)

in_port2(ch2), ip_src: 11 out_port3(ch3)

S2 in_port1(ch3), ip_src: 10 out_port2(ch4)

in_port1(ch3), ip_src: 11 drop

S3 in_port2(ch4), ip_src: 10 out_port1(ch2)

Flow Table to pACSR

12

S1 S2

S3

Port1

Port2

Port2

Port3 Port1

Port2

Port3

ch1 ch3 ch5

ch4ch2

Port1

S1 := ch1?x.S11(x) + ch2?x.S12(x) + {}:S1
S11(x) := matchSrcIP(x,10)->{}:S13(x)

+ ~matchSrcIP(x,10)->{}:S1 // no rule to match
S12(x) := matchSrcIP(x,10)->{}:S13(x)

+ ~matchSrcIP(x,10)->tau.S14(x)
S13(x) := ch3!x.S1
S14(x) := matchSrcIP(x,11)->{}:S13(x)

+ ~matchSrcIP(x,11)->{}:S1 // no rule to match

S2 := ch3?x.S21(x) + {}:S2
S21(x) := matchSrcIP(x,10)->{}:S23(x)

+ ~matchSrcIP(x,10)->tau.S22(x)
S22(x) := matchSrcIP(x,11)->{}:S2 // drop

+ ~matchSrcIP(x,11)->{}:S2 // no rule to match
S23(x) := ch4!x.S2

S3 := ch4?x.S31(x) + {}:S3
S31(x) := matchSrcIP(x,10)->{}:S32(x)

+ ~matchSrcIP(x,10)->{}:S3 // no rule to match
S32(x) := ch2!x.S3

E := ch1!x.E1
E1 := {}:E1

SDN := (S1 || S2 || S3 || E)/{ch1,ch2,ch3,ch4}

S1 := ch1?x.S11(x) + ch2?x.S12(x) + {}:S1

…

S2 := ch3?x.S21(x) + {}:S2

S21(x) := matchSrcIP(x,10)->{}:S23(x)

+ ~matchSrcIP(x,10)->tau.S22(x)

S22(x) := matchSrcIP(x,11)->{}:S2

+ ~matchSrcIP(x,11)->{}:S2

S23(x) := ch4!x.S2

…

E := ch1!x.E1

E1 := {}:E1

SDN := (S1 || S2 || S3 || E)/{ch1,ch2,ch3,ch4}

pACSR – Operational Semantics

13

Switch S1, S2, S3, and Environment E
is running in parallel

Switch S1 gets packet from ch1 or ch2 and
becomes S11 or S12, respectively.
Otherwise, idle one time unit

Switch S2 gets packet through ch3, otherwise, idle.

Check if source IP of packet ‘x’ is matched with 10

Otherwise, try to match other rules

Check if source IP of packet ‘x’ is matched with 11,
and if so, drop it

No rule to match, so become S2

Egress packet ‘x’ through ch4

Send packet ‘x’ to ch1

Idle forever

S1||S2||S3||E

S11||S2||S3||E1

tau@ch1

{}

S13||S2||S3||E1
m(x,10); {}

S1||S21||S3|E1

tau@ch3

S1||S23||S3||E1

S1||S22||S3||E1

m(x,10); {}

S1||S2||S31||E1

tau@ch4

S1||S2||S32||E1

m(x,10); {}

S12||S2||S3||E1

tau@ch2
m(x,10); {}

S14||S2||S3||E1
~m(x,10); tau

~m(x,11); {} m(x,11); {}

m(x,11); {} ~m(x,11); {}

S1||S2||S3||E1

~m(x,10); {}

S1 S2

S3

ch1 ch3 ch5

ch4ch2

{}

~m(x,10); tau

pACSR to STG
(Symbolic Transition Graph)

14

S1||S2||S3||E

S11||S2||S3||E1

tau@ch1

{}

S13||S2||S3||E1
m(x,10); {}

S1||S21||S3|E1

tau@ch3

S1||S23||S3||E1

S1||S22||S3||E1

m(x,10); {}

S1||S2||S31||E1

tau@ch4

S1||S2||S32||E1

m(x,10); {}

S12||S2||S3||E1

tau@ch2
m(x,10); {}

S14||S2||S3||E1
~m(x,10); tau

~m(x,11); {} m(x,11); {}

m(x,11); {} ~m(x,11); {}

S1||S2||S3||E1

~m(x,10); {}

{}

~m(x,10); tau

ab
^

ab
^

For simplicity,
use “m()” instead
“matchSrcIP()”

Symbolic Verification on STG

15

S1 S2

S3

ch1 ch3 ch5

ch4ch2

VeriSDN: Status
• Wiki - www.veriSDN.net
• Members
– ETRI, Cemware Co., Ltd., Korea Univ.

• Open source release
– Initial Release : POX (Python) support tool release(Q4,

2013)
• C, Javalanguage support (in plan)

– Target Apps in plan
• OpenFlow 1.3.x Apps
• NSC (Network Service Chaining) Validation, Possibly
• IETF I2RS App (RIB, FIB, QoS, etc), Possibly

16

POX Controller

route.py
load_balance.py

firewall.py

SDN Switch

modify-
state()

SDN Switch ...

Implementation Architecture

17

Global Network View (DBs)
(Aggregation of Flow Tables.
Group Table, Meter Table, etc.)

pACSR

VeriFM
(STG Generation)

Model
Checking

LTL

CTL

Operators’
Defined

Properties

Basic Safety
Properties

pACSR Generator

Development Environment

• Multi-Apps
• Routing, Firewall …

• Controller
– POX (Python)

• VeriFM
– VERSA (modified)

• Mininet
– OpenFlow Switch
– OVS
– Host

• OpenStack

18

Discussion and Next Step

• Is “SDNRG” interested in this topic ?
• Investigate relevant works and challenging

issues
– define simple/minimum semantics for SDN

abstraction ?
– Formal description and verification

• Develop a common framework document for
formal verification of SDN

19

