SOURCE IDENTITY (ORIGIN AUTHENTICATION)

Henning Schulzrinne
August 2013
Overview

- Phone numbers will be with us for 10++ years
- Their lack of validation is the main cause of phone-related criminality and nuisance
- Related to domain name validation, but significant differences
 - each country code has one (regulatory) root
- Validate that originator of call is authorized to use From number
- Earlier attempts have failed
- The problem is well-scoped
 - competing ideas are generally compatible
- Known unknowns
Two modes of caller ID spoofing

Impersonation
- spoof *target number*
 - personal or 800 number
- Helpful for
 - vishing
 - stolen credit card validation
 - retrieving voicemail messages
 - SWATting
 - disconnect utilities
 - unwanted pizza deliveries
 - retrieving display name (CNAM)

Anonymization
- pick more-or-less *random number*
 - including unassigned numbers
- Helpful for
 - robocalling
 - intercarrier compensation fraud
 - TDOS
Robocalling

For Release: 03/07/2013

FTC Cracks Down on Senders of Spam Text Messages Promoting "Free" Gift Cards
Defendants Were Responsible for More than 180 Million Spam Text Messages
Caller ID spoofing

- Easily available on (SIP) trunks
- US Caller ID Act of 2009: Prohibit any person or entity from transmitting misleading or inaccurate caller ID information with the intent to defraud, cause harm, or wrongfully obtain anything of value.
- Also: FCC phantom traffic rules
Legitimate caller ID spoofing

• Doctor’s office
 • call from personal physician cell phone should show doctor’s office number

• Call center
 • airline outbound contract call center should show airline main number, not call center

• Multiple devices, one number
 • provide single call-back number (e.g., Google Voice) from all devices

anonymity is distinct problem (caller ID suppression)
Requirements

• **E.164** number source authenticity
 • E.164 taken loosely (N11, P-ANI, non-reachable numbers, …)
 • assume that numbers can be canonicalized for signing
 • seems to work for VM, CDRs, SS7 translation, …

• Complete solution (but not necessarily one mechanism)
 • number assignment to validation
 • validate caller ID
 • later?: extended caller information

• Functionality
 • must work without human intervention at caller or callee
 • minimal changes to SIP
 • **must survive SBCs**
 • must allow *partial authorized & revocable* delegation
 • doctor’s office
 • third-party call center for airline
 • must allow number portability among carriers (that sign)
Requirements

• Privacy
 • e.g., third parties cannot discover what numbers the callee has dialed recently

• Efficiency
 • will need a mode that causes minimal expansion of SIP headers (= suitable for UDP)
 • e.g., caching of certs or public keys

• Simplicity
 • minimize overall complexity
 • incremental deployment
Not in scope

- Validate other identifiers (e.g., sip:alice@example.com)
 - might or might not translate (assignment hierarchy)
- Validate textual caller ID (“CNAM”)
 - anybody can call themselves “CARD HOLDER SVC”
- Cross-national
 - calls from +234 codes are not a major problem (right now)
- Content (media) protection or integrity
 - → SRTP
- Most man-in-the-middle signaling attacks
 - e.g., evil proxy retargets call to grandma into selling Medicare supplements
 - content (media) protection or integrity
P-Asserted-Identity (RFC 3325)

P-Asserted-Identity: "Cullen Jennings" <sip:fluffy@cisco.com>
P-Asserted-Identity: tel:+14085264000

• RFC 3325 assumptions:
 • originating end systems cannot alter SIP headers (or intermediate entities can be trusted to remove PAI headers)
 • trusted chain of providers
RFC 4474 (SIP Identity)

INVITE sip:bob@biloxi.example.org SIP/2.0
Via: SIP/2.0/TLS pc33.atlanta.example.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.example.org>
From: Alice <sip:alice@atlanta.example.com>;tag=1928
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Max-Forwards: 70
Date: Thu, 21 Feb 2002 13:02:03 GMT
Contact: <sip:alice@pc33.atlanta.example.com>
Identity: "KVhPKbfU/pryhVn9Yc6U="
Identity-Info: <https://atlanta.example.com/atl.cer>;alg=rsa-sha1
Content-Type: application/sdp
Content-Length: 147

v=0
o=UserA 2890844526 2890844526 IN IP4 pc33.atlanta.example.com
s=Session SDP
...
Problems with RFC 4474

- see rosenberg-sip-rfc4474-concerns
- Cannot identify assignee of telephone number
- Intermediate entity re-signs request
- B2BUAs re-originate call request
 - replace everything except method, From & To (if lucky)
VIPR concerns

- Uses PSTN for reachability validation
 - “own” number → proof of previous PSTN call (start/stop time, …)
- First call via PSTN
 - doesn’t deal with robocalls
 - “A domain can only call a specific number over SIP, if it had previously called that exact same number over the PSTN.”
- Single, worldwide P2P network
 - deployment challenging
- Allows impersonator to find out who called specific number
Changes in environment

<table>
<thead>
<tr>
<th>Old (pre-2000)</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small number of carriers serving customers with fixed number pools</td>
<td>• carriers that provide services to non-carriers (e.g., Google Voice, VRS)</td>
</tr>
<tr>
<td>(residential, inbound)</td>
<td>• voice service providers (via APIs)</td>
</tr>
<tr>
<td>Carriers either larger or rural → trusted</td>
<td>“Pink” carriers (robocalls = lots of minutes)</td>
</tr>
<tr>
<td>Carriers with deep engineering skills</td>
<td>Telecom engineers fired or retired</td>
</tr>
<tr>
<td>Call routing determined by physical transport (MF or SS7)</td>
<td>logical routing via SIP proxies</td>
</tr>
<tr>
<td>Domestic calls stay within the country</td>
<td>call from NJ to NY may visit Berlin</td>
</tr>
<tr>
<td>#'s only for certificated carriers (~ 1000)</td>
<td>interconnected VoIP providers (trial)</td>
</tr>
<tr>
<td>1000 block assignment</td>
<td>individual numbers?</td>
</tr>
<tr>
<td>Geographic assignment (LATA, area code)</td>
<td>no direct relationship to geography (800#, mobile, VoIP, M2M, …)</td>
</tr>
</tbody>
</table>
What makes solutions harder than in 2002?

• Mostly E.164 numbers, not domain-based SIP URIs
• Failure of public ENUM → no central database
• B2BUA deployment
 • → SDP rewritten for most calls
• Stickiness of infrastructure
 • SS7 will be with us, unchanged, for decade+
• Lots of non-SIP interconnection
 • for both technical and non-technical reasons
 • note: regulators typically encourage VoIP interconnection
Changes: opportunities

- Mobile, programmable devices
 - IP connectivity
 - allows (some) end system validation
- IP-enabled PBX & SIP trunking
- PKI developments, e.g., DANE
Basic architecture

- SS7
- cert or public key
- validate
- validate
- validate
- local carrier
- LD carrier
- SS7
- may tunnel as UUI
- rendezvous mechanism
- signs number after normalization
Options

Number validation

Public key only (e.g., DNS)
- public
 - separate delivery (URL)
- private
- single certifier (per CC)
 - single "CDN"
 - number-based access (no URL)
- X.509 cert
 - multiple certifiers per CC
 - single cert store (hierarchy)
 - any cert anywhere

almost all of these could interoperate in single system
Certificate models

- **Integrated** with assignment
 - assignment of number includes certificate: “public key X is authorized to use number N”
 - issued by number assignment authority, possibly with delegation chain
 - allocation entity → carrier → end user

- **separate** proof of ownership
 - similar to web domain validation
 - e.g., Google voice validation by automated call back
 - “Enter the number you heard”
 - SIP OPTIONS message response?
Delegation options

1. Official holder of number block interacts with registry
 • “My customer TheDoctorIsOut can use 212-555-1234 out of my number block”
 • requires database interaction
2. X.509 certificate delegation chain
 • reveals relationship of carriers and customers
Known unknowns

• Who will **sign** first, by choice or mandate?
 • large carriers (“get rid of robocall complaints”)
 • legitimate outbound call centers (“I want my snow day alert to be received”)
 • high-value users (“I want to prevent identity theft”)
 • smartphone end users

• Who will **validate** first?
 • carriers concerned about intercarrier compensation fraud
 • carriers sick of customer complaint calls
 • new entrants looking for differentiator (“switch and no more robocalls!”)
Incremental deployment

- signed?
 - N
 - should be signed?
 - N
 - known caller?
 - N
 - overlooks
 - Y
 - inquiry
 - Y
 - validates?
 - Y
 - STOP
 - N
 - STOP

STOP
Conclusion

• Number spoofing is root of (almost) all phone evil
• Number spoofing may accelerate decay of PSTN
• Centralized number assignment makes problem tractable
• Solution approaches based on different assumptions
 • who is willing to do what & when?
• All in for one approach or multiple solutions?
 • reduce risk by multiple approaches?
 • cost to central entities vs. cost to signers & validators
 • or increase confusion, cost and non-adoption?