
TCP and SCTP RTO Restart
draft-ietf-tcpm-rtorestart-00

TCPM WG
IETF-87

Anna Brunstrom
anna.brunstrom@kau.se

1

RTO Restart

• As the RTO timer is restarted on an incoming ACK (RFC
6298, RFC 4960), the effective RTO often becomes
RTO = RTO + t
– Where t ≈ RTT [+delACK]

• RTO restart adjusts the RTO so that retransmissions are
performed after exactly RTO seconds

• The modified restart is only used when
– the number of outstanding segments < 4;
– and there is no unsent data ready for transmission.
– Thus, only flows incapable of FR can use modified RTO

restart

2

Status

• Implementation in Linux 3.7 available
– http://riteproject.eu/projects/wp1-end-systems-

and-applications/rto-restart/

• Has been used in Cisco IOS for long time
– Applied to all segments

• Main discussion points on list
– Apply RTO restart to all segments
– Increased risk of spurious RTO

3

http://riteproject.eu/projects/wp1-end-systems-and-applications/rto-restart/
http://riteproject.eu/projects/wp1-end-systems-and-applications/rto-restart/

Spurious RTOs

• Impact of spurious RTO
– Negligible for short flows and thin streams
– Problem for flows with multiple bursts, as cwnd

reduced

• Risk of spurious RTO
– Standard prescribes minimum RTO of 1 second

which limits risk
– Most implementations do not follow the standard

→ implementation dependent

4

Spurious RTO in Linux

• Self-induced congestion
– limited risk as Linux updates SRTT for all ACKs

• Age of Conan
trace-based
evaluation

• Trace-based
tmix evaluation
– no impact seen

so far

5

Next steps

• Text updates to improve presentation in draft
• Continued experiments with Linux

implementation
• WG input on further improvements to the

draft

6

	TCP and SCTP RTO Restart�draft-ietf-tcpm-rtorestart-00� �TCPM WG�IETF-87
	RTO Restart
	Status
	Spurious RTOs
	Spurious RTO in Linux
	Next steps

