ICN based Architecture for IoT

ICNRG/IETF 88, 2013

Yanyong Zhang, Dipankar Raychadhuri (WinLab @ Rutgers University) Ravi Ravindran and Guo-Qiang Wang (Futurewei, USA)

IoT Motivation and Challenges

Popular scenarios

- Smart Homes
 - Policy based seamless interaction between heterogeneous control systems (climate/security/health/entertainment etc.); service composition; mobility.
- Smart Grid
 - Reliability, Rea-time Control, Secure Communication to achieve energy efficiency
- Smart Transportation
 - Very short Response time Ad-hoc + Infrastructure communication with mobility, secure data collection and exchange
- Smart Healthcare
 - Security/Privacy/Trust, High Reliability, short-communication latency

Scale + Energy + Variable-Context + Open-API: Service Realization/User Experience

IoT Architectural Requirements

Naming

 Application Centric (Secure or not), Persistent considering Mobility, Context Changes.

Scalability

• Scale to billions on devices (passive/active), name/locator split, local/global services, resolution infrastructure, efficient context update.

Resource Constraints

• Compute/Storage/Bandwidth constrains, Protocols being application/context aware, Infrastructure support (edge computing, polling on demand)

Traffic Characteristics

 Separate Local versus Wide Area traffic based on Application logic; Many-to-Many (Multicasting/Anycasting)

Contextual Communication

Key to create several meaningful IoT services

Handling Mobility

Fundamental Design Criteria

IoT Architectural Requirements

Storage and Caching

 Leverage as much as possible being sensitive to application/service producer requirements

Security and Privacy

Takes precedence over any communication paradigm (ICN or not)

Communication Reliability

Application centric (e.g. Health)

Self-Organization

• Ability to self-organize in Ad Hoc/Infrastructure setting to discover resources (services/content/users/devices) and Communicate.

Ad hoc and Infrastructure Mode

Seamless transitions between the two worlds, user/application driven.

Legacy IoT systems

- Silo IoT Architecture (Fragmented, Proprietary), e.g. DF-1, MelsecNet, Honeywell SDS, BACnet, etc
- Fundamental Issues: Co-existence, Interoperability, Service level interaction

Vertically Integrated

State of the Art

- Overlay Based Unified IoT Solutions
- Coupled control/data functions
- Centralized and limits innovation

State of the Art

Weaknesses of the Overlay-based Approach

- Naming: Resources visible at Layer 7
- Mobility: Inherited by IP based communication
- Scalability: Merges control + forwarding path in central servers (bottleneck)
- *Resource constraints*: Network insensitive to device constraints.
- Traffic Characteristics: Overlaid support for Multicasting (in-efficient & complexity)

- ICN has a potential to influence this emerging area of IoT as a unified platform for interaction between Consumers, ASPs, Network Operators.
 - Potential ICN as Network layer in the edges ?
- Potential technology to glue heterogeneous applications/services/devices (CIBUS)
 - CIBUS [SIGGCOMM, 2013]
- •ICN is Contextual, Content Level Security (Access control/Privacy), Multicast/Anycast is naturally enabled.

Strengths of ICN-IoT

- Naming
 - Application Centic (Hierarchical/Secure/Hybrid)
- > Scalability
 - Name-Location Split, Localizes Communication where required
- Resource Constraints
 - > Application aware communication
- > Context-aware communications
 - ➤ Adaptation at Network Level (at all levels)
- Seamless mobility handling
 - Flexible Name Resolution (Late Binding)

- ➤ Data Storage
 - ➤ Enables Edge Computing/Multicasting
- ➤ Security and privacy
 - > Very Flexible (User/Device/Service/Content Level)
- > Communication reliability
 - ➤ Adaptable to Best Effort to DTN
- > Ad hoc and infrastructure mode
 - ➤ De-coupling of Application from Transport Layer

The ICN-IoT Service Middleware

ICN-IoT Data and Services

• ICN-IoT Scenario: Location context service in

Location context application scenario

