IPv6 Transition Unification Openv6

IntArea WG
IETF88, Vancouver
4 Nov 2013

China Telecom: Qiong Sun, Chongfeng Xie

Telefonica I+D: Diego Lopez

Huawei: Cathy Zhou, Will Liu, Felix Lu, Tina Tsou, Haiyong Xie,

Spencer Dawkins

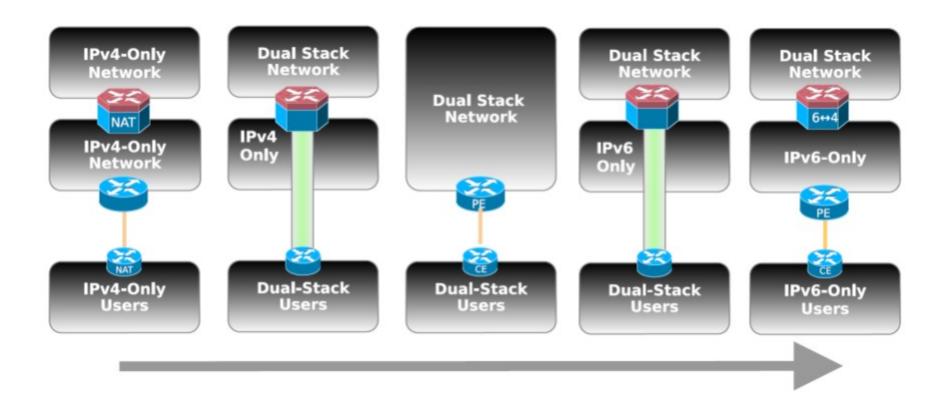
Viagénie : Guillaume Leclanche

Univ. of Science & Tech of China: Wenfeng Xia

Agenda

- Motivations for this work
- Technology Description
- China Telecom Use Case
- New Protocol Work
- Demo & Next steps

IPv6: Current status

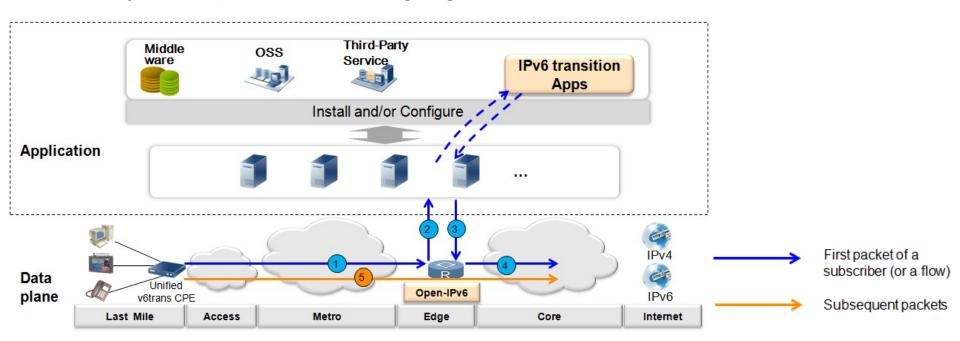

- Current state of IPv6 transition
 - Many solutions and multiple scenarios co-exist, e.g., 4-6-4, 6-6-4, etc.
 - Slow transition

Challenges

- Legacy equipment does not support multiple IPv6 transition technologies at the same time
- Lack of native IPv6 applications

Lack of motivation and high cost for carriers / service providers / end users to transition to IPv6

IPv6: The Long Slow Evolution



Motivation

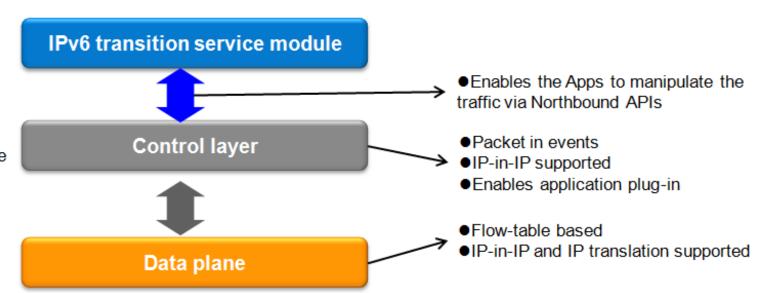
- Design a *low-cost*, *unified* approach to IPv6 transition
 - Low-cost: a virtual CPE (e.g. vRGW) for example can cover different scenarios of IPv6 transition. Carriers do NOT have to upgrade/manage CPEs to support a specific IPv6 transition scheme
 - Unified: the design should be open enough to allow future IPv6 transition schemes

Openv6 in a nutshell (1)

- 1. The Transition CPE sends a packet initiating a new flow
- 2. The « Transition Device » asks the « Transition Management Server » what to do
- 3. The TMS configures the TD for this flow
- 4. The packet is forwarded
- 5. Every new packet belonging to this flow is forwarded

Openv6 in a nutshell (2)

Data Plane


Action: Modify IP and/or TCP/UDP port **IP-in-IP**: IP-in-IP tunnel en(de)capsulation

Control layer

Providing a northbound interface (NBI)
Transition application plug-in
Packet-in events processing

 Application modules providing user functions

enabling an application to program the data plane

China Telecom Use Case

CT Uses various transition technologies

- Examples :
 - DS-Lite + Lightweight4over6 + CGN for Broadband Customers
 - DualStack + CGN for DataCenters
- They want to:
 - 1. Change the transition technology used in a straightforward way
 - 2. Have a centralized management of address pools

New Protocol Work

draft-sun-v6ops-openv6-address-pool-management-00
 Address Management for IPv6 Transition
 Allocation procedure of addresses for translators/tunnels

draft-zhou-netmod-openv6-transition-cfg-00
 A YANG Data Model for Open IPv6 Transition
 Communication Transition Servers <-> Transition Devices

And for reference ...

- draft-sun-openv6-problem-statement-00
 Problem Statement for Openv6 Scheme
- draft-liu-openv6-architecture-00
 Openv6 Architecture for IPv6 Deployment

Deployments

- Various lab deployments
- ETSI Network Function Virtualization, 2nd meeting April 22–23, 2013. 200+ participants.

=> Openv6 can handle a reasonably *large number of flows with very good cost-performance efficiency*

BnB@IETF88

Please join us in Bits 'N Bites for more info!

Technology & Networking Social

IETF 88 Meeting - Vancouver, BC, Canada

Hyatt Regency Vancouver

Date: November 7, 2013 (Thursday)

Time: 19:00-21:00

Location: Regency Ballroom D,E,F

Summary

- We propose a new approach to IPv6 transition
 - Low cost
 - High performance
 - Unifying existing IPv6 schemes
 - Extensible: easy to add / implement new IPv6 schemes
 - Easy to implement, deploy and operate

Questions?