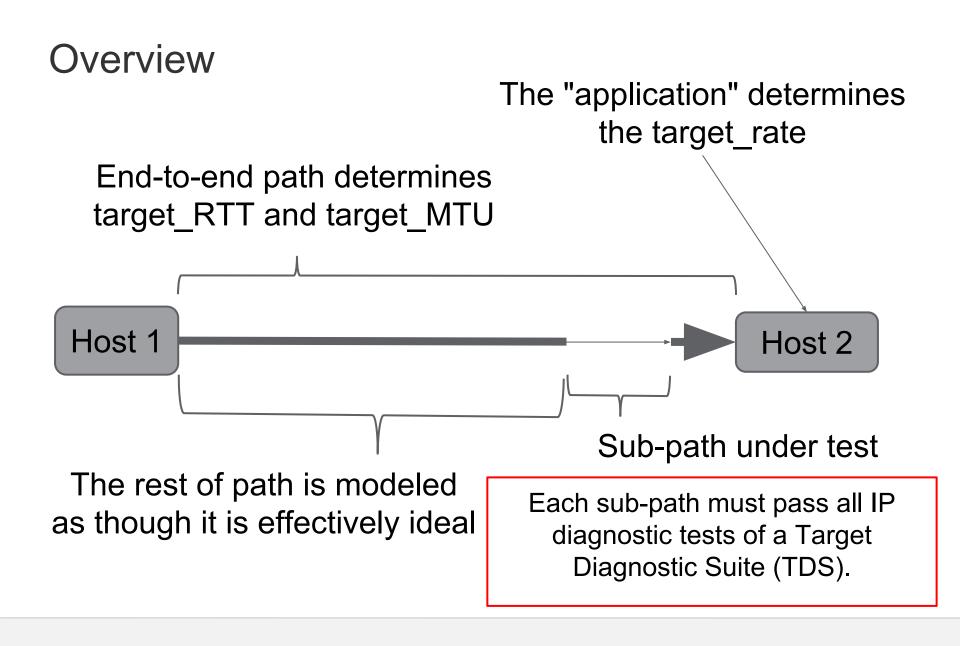
Model Based Metrics

IPPM Working Group IETF 88, Vancouver BC, Nov 2012

Matt Mathis <mattmathis@google.com> Al Morton <acmorton@att.com>

Outline (DRAFT)


- Document status update & major changes
- Quick overview (new spin)
- Some concrete examples
- Model tweaks & parameter derating
- Future work & open issues

Document Status (-01)

- Completed previously missing sections
 - (Model) Validation (was Calibration)
 - Alternate model derivations
 - The document is now structurally complete
- Narrowed scope
 - Focuses on test traffic patterns and delivery statistics
 - All other measurement detail are (or to be) abstracted away
 - (Some obsolete text lingers)
- New key concepts
 - Targeted Diagnostic Suite
 - A set of tests with specified traffics patterns and delivery statistics
 - Fully Specified Targeted Diagnostic Suite
 - ...plus type-p and other out-of-scope measurement details

Overall Methodology

- Choose Target Parameters
 - Target_data_rate, target_RTT, and target_MTU
- Compute common model parameters
 - target_pipe_size required average window size
 - target_run_length required spacing between losses/ECN marks, etc
- Generate a Targeted Diagnostic Suite (TDS)
 - Pass/Fail/Inconclusive tests of all important IP properties
 - Average spacing between losses (run length)
 - Sufficient buffering at the dominant bottleneck
 - Sufficient tolerance for IF rate bursts
 - Appropriate treatment of standing queues (AQM, etc)
- FSTDS fully specifies all of the rest of the test details
 - Type-p, timing and cross traffic tolerances, etc
 - Out of scope for this document, but can reuse existing metrics

Example: HD Video at moderate range (50 mS)

- Target: 5 Mb/s (payload) rate; 50 mS RTT; 1500 Byte MTU
- Model:
 - Target_pipe_size = 22 packets
 - o Target_run_lenght = 1452 packets
- Computed TDS:
 - Run length longer than 1452 packets (no more than 0.069% loss)
 - Tolerates 44 packet slowstart bursts (twice the actual bottleneck rate)
 - (Peak queue occupancy is expected to be 22 packets)
 - Tolerates 22 packet bursts at server interface rate
 - (Peak bottleneck queue also expected to be 22 packets)
 - Standing queue test:
 - First loss/ECN is more than 1452 packets after the onset of queueing
 - First loss/ECN is no later than 3*1452(?) packets after queueing onset
 - Precise success criteria still under evaluation

Tieing it all together

- Assertion:
 - If every sub-path passes all TDS tests (IP layer!)
 - Then the end-to-end path will meet the target TCP performance
- Observation:
 - The Fully Specified TDS must be concrete
 - The derivation from the targets does not have to be as concrete

An easier test procedure

- Fold most of the TDS into a single combined test
 - Downside: symptoms become ambiguous
- Send 22 packet server rate bursts every 50 mS
 - Must average <1 loss/ECN every 66 bursts (1452 packets)
 - \circ $\,$ This has the same average data rate
 - ...same stress on the primary bottleneck (although more frequent)
 - ...same or higher stress on the rest of the path
- This test may actually be too conservative
 - A path that can withstand this test is likely to meet a higher target
 - This was the motivation for "derating"

Quasi-passive

- Diagnosis as a side effect of delivering real content
 - \circ $\,$ e.g. using RFC 4898 $\,$ TCP ESTATS MIB $\,$
- Requires non-throughput maximizing traffic
 - \circ $\,$ To avoid self inflicted congestion
 - E.g. any streaming media < target_rate
- Requires serving RTT < target_RTT
- Compute test_window = target_data_rate*serving_RTT
- Clamp serving cwnd to test_window
 - Average rate over any full RTT will be smaller than target_rate
 - All bursts will be smaller than test_window (also target_pipe_size)
 - Compute run length from actual delivery statistics

The concept of parameter derating

- Original idea was to partially offset overly conservative models
 - Replace theory with **empirically derived models**
- Proven via "Validation" experiments
 - \circ $\;$ Must justify alternate models and assumptions
 - Construct a real network that infinitessimally passes the TDS
 - Demonstrate that a real application can still meet the targets
 - The validation has to be public to the same extent as the results
- The potential for parameter creep
 - MBM will implicitly separate network and transport responsibility
 - See ICCRG @ IETF86
 - Tweaking models may make it easier to pass dubious gear but
 - also gives transport designers permission to be more aggressive

Parameter derating in the current draft

- Greatly reduced prominence
 - Removed all test specific derating, except:
- Tests where we do not have strong models
 - Use derating to include weakly justified "rules of thumb"
 - For server rate bursts:
 - Do they have to be full window, or are partial windows sufficient?
 - Should they be permitted to have "slightly" higher losses?
 - For standing queue tests:
 - How late is still ok for the first loss (AQM test)
 - Signatures of channel arbitration problems

Next steps

- Start a separate research paper
 - Move much of the background material out of the draft
 - Also rational and "paths not chosen", etc
- Finish and evaluate prototype MBM tools
 - Plan a full measurement and validation study in the research paper
- -01bis is already open
 - Currently receiving a tight editorial pass
 - No content changes yet
 - Although significant portions are already tagged to move elsewhere
- Possible new text:
 - TDS completeness and coverage rules
 - Discussion of budgeting loss and delay (RTT) across subpaths
 - Testing in idealized environments (this is not the right language)
- Open a comment tracker(?)