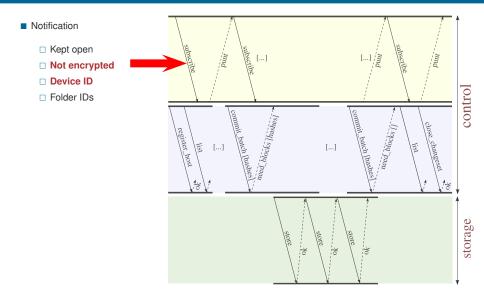
UNIVERSITY OF TWENTE.

Inside Dropbox: Understanding Personal Cloud Storage Services

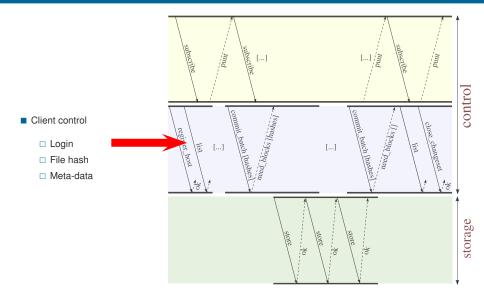
- → Idilio Drago
- → Marco Mellia
- → Maurizio M. Munafò
- → Anna Sperotto
- → Ramin Sadre
- → Aiko Pras

IRTF - Vancouver

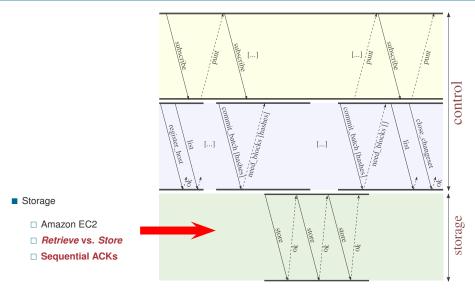
- Personal cloud storage services are already popular
- Dropbox in 2012
 - □ "the largest deployed networked file system in history"
 - □ "over 50 million users one billion files every 48 hours"
- Little public information about the system
 - □ How does Dropbox work?
 - □ What are the potential performance bottlenecks?
 - Are there typical usage scenarios?


- Public information
 - □ Native client, Web interface, LAN-Sync etc.
 - Files are split in chunks of up to 4 MB
 - Delta encoding, deduplication, encrypted communication
- To understand the client protocol
 - MITM against our own client
 - Squid proxy, SSL-bump and a self-signed CA certificate
 - □ Replace a trusted CA certificate in the heap at run-time
- Proxy logs and decrypted packet traces

- Clear separation between storage and meta-data/client control
- Sub-domains identifying parts of the service


sub-domain	Data-center	Description
client-lb/clientX	Dropbox	Meta-data
notifyX	Dropbox	Notifications
api	Dropbox	API control
WWW	Dropbox	Web servers
d	Dropbox	Event logs
dl	Amazon	Direct links
dl-clientX	Amazon	Client storage
dl-debugX	Amazon	Back-traces
dl-web	Amazon	Web storage
api-content	Amazon	API Storage

■ HTTP/HTTPs in all functionalities


How does Dropbox (v1.2.52) work?

How does Dropbox (v1.2.52) work?

How does Dropbox (v1.2.52) work?

- Rely on Tstat¹ to export layer-4 flows
- Isolate Dropbox flows
 - DN-Hunter², TSL/SSL certificates, IP addresses
- Device IDs and folder IDs
- Use the knowledge from our own decrypted flows to
 - □ **Tag Dropbox flows** e.g., *storing* or *retrieving* content
 - Estimate the number of chunks in a flow

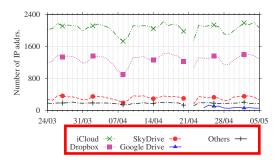
¹ http://tstat.polito.it/

²DNS to the Rescue: Discerning Content and Services in a Tangled Web > < \(\begin{array}{c} > \left \beta \\ \beta \\ \end{array}\)

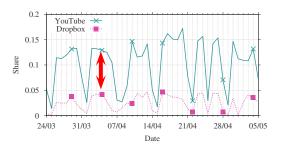
Datasets

Туре		IP Addrs.	Dropbox		
			Flows	Vol. (GB)	Devices
Campus 1	Wired	400	167,189	146	283
Campus 2	Wired/Wireless	2,528	1,902,824	1,814	6,609
Home 1	FTTH/ADSL	18,785	1,438,369	1,153	3,350
Home 2	ADSL	13,723	693,086	506	1,313
Total	-		4,204,666	3,624	11,561

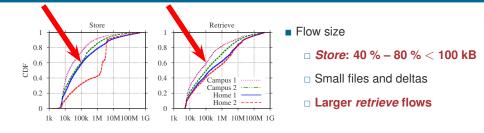
- 42 consecutive days in March and April 2012
 - □ 4 vantage points in Europe

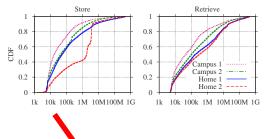

Datasets

	Type	IP Addrs	Dropbox		
	Type		Flows	Vol. (GB)	Devices
Campus 1	Wired	400	167,189	146	283
Campus 2	Wired/Wireless	2,528	1,902,824	1,814	6,609
Home 1	FTTH/ADSL	18,785	1,438,369	1,153	3,350
Home 2	ADSL	13,723	693,086	506	1,313
Total			4,204,666	3,624	11,561

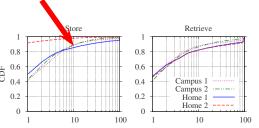

- 42 consecutive days in March and April 2012
 - □ 4 vantage points in Europe
 - □ Number of IP addresses in home probes ≈ installations

Typo	Type	IP Addrs.	Dropbox		
	туре	II Addis.	Flows	Vol. (GB)	Devices
Campus 1	Wired	400	167,189	146	283
Campus 2	Wired/Wireless	2,528	1,902,824	1,814	6,609
Home 1	FTTH/ADSL	18,785	1,438,369	1,153	3,350
Home 2	ADSL	13,723	693,086	506	1,313
Total			4,204,666	3,624	11,501

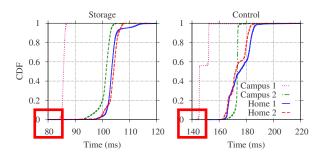

- 42 consecutive days in March and April 2012
 - □ 4 vantage points in Europe
 - \square Number of IP addresses in home probes \approx installations
 - □ 11,561 unique devices
- 2nd capture in Campus 1 in June 2012

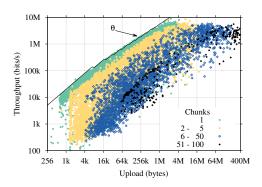


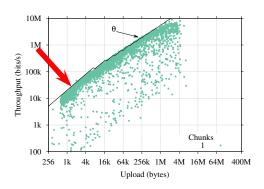
- Server names to check popularity (DN-Hunter)
- 6 12 % adoption in home networks
- iCloud tops in terms of devices

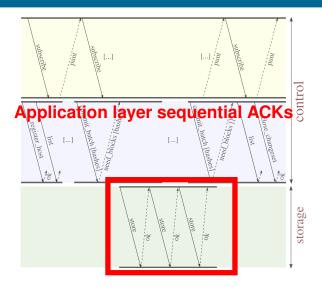


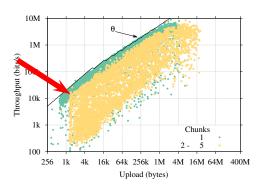
- Equivalent to 1/3 of YouTube volume at Campus 2
- 90 % of the Dropbox traffic is from the native client



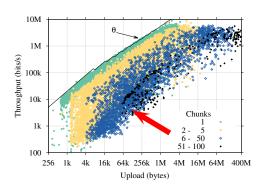

- Flow size
 - □ *Store*: 40 % 80 % < 100 kB
 - Small files and deltas
 - □ Larger retrieve flows


- Chunks per flow
 - \square 80 % \leq 10 chunks
 - □ Remaining: up to 100
 - Limited by the client

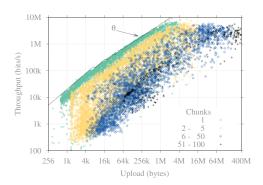

- Minimum RTT per flow → stable over 42 days
- PlanetLab experiments → the same U.S. data centers worldwide
- "less than 35 % of our users are from the USA"



- Storage throughput in campuses
- Most flows experience a low throughput



- Flows carrying 1 chunk
 - \square Size \leq 4 MB, RTT pprox 100 ms
 - Most of them finish in TCP slow-start



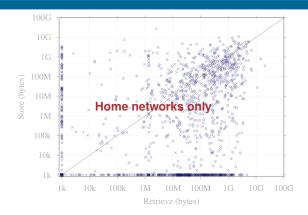
- Flows carrying several chunks
 - □ Pause between chunks → RTT and client/server reaction

- Flows carrying several chunks
 - Transferring 100 chunks takes more than 30 s
 - \square RTTs \rightarrow 10 s of inactivity

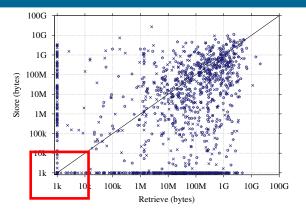
- Delaying acknowledgments
- \square Bundling chunk \rightarrow deployed after our 1st capture
- □ Distributing servers → storage traffic is heavy!

- New protocol released on Apr 2012 (v 1.4.0)
 - □ Small chunks are bundled together

	Mar/Apr		Jun/Jul			
	Median	Average	Median	Average		
	Flow size					
Store	16.28 kB	3.91 MB	3.91 MB 42.36 kB			
Retrieve	42.20 kB	8.57 MB	70.69 kB	9.36 MB		
	Throughput (kbits/s)					
Store	31.59	358.17	81.82	552.92		
Retrieve	57.72	782.99	109.92	1293.72		

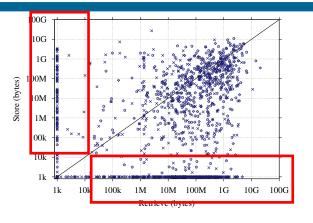

- Less small flows → less TCP slow-start effects
- Average throughput is up to 65 % higher

	Dropbox	SkyDrive	Wuala	Google Drive	Cloud Drive
Chunking	4 MB	variable	variable	8 MB	×
Bundling	1	X	X	X	X
Deduplication	1	Х	1	Х	Х
Delta encoding	√	Х	Х	Х	Х
Compression	always	never	never	smart	never


- Comparison of design choices of different providers
- Benchmarking Personal Cloud Storage IMC 2013

	Dropbox	SkyDrive	Wuala	Google Drive	Cloud Drive
Chunking	4 MB	variable	variable	8 MB	Х
Bundling	1	Х	Х	Х	Х
Deduplication	✓	Х	1	Х	X
Delta encoding	1	×	×	X	Х
Compression	always	never	never	smart	never

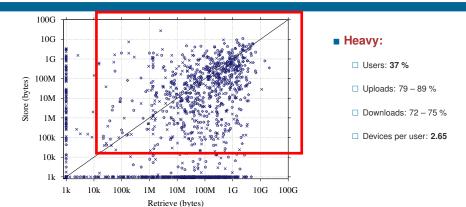
- Are batches of files exchanged in a single transaction?
 - □ Cloud Drive and Google Drive open several TCP connections per file


- More downloads → download/upload ratio up to 2.4
- What about download/upload per user?

Occasional:

- ☐ Users: 31 %
- ☐ Devices per user: 1.22

- Abandoned Dropbox clients
- No storage activity for 42 days


- Backup and content sharing
- Geographically dispersed devices

■ Upload-only:

- □ Users: 6 %
- □ Uploads: 11 21 %
- □ Devices per user: 1.36

Download-only:

- ☐ Users: 26 %
- □ Downloads: 25 28 %
- □ Devices per user: 1.69

Synchronization of content in a household

- 1st to analyze Dropbox usage on the Internet
- Cloud storage is a new data-intensive application
 - □ Adoption above 6 % in our datasets
- Architecture and performance
 - Bottlenecks from system design choices
- Extensive characterization of workload and usage
 - User groups, number of devices, daily activity etc.

■ Thank You.

Anonymized traces and scripts

http://traces.simpleweb.org/dropbox/