Measuring and Circumventing Internet Censorship and Control

Nick Feamster Georgia Tech

http://www.cc.gatech.edu/~feamster/

Joint work with Sam Burnett, Santosh Vempala, Sathya Gunasekaran, Crisitan Lumezanu, Hans Klein, Wenke Lee, Phillipa Gill, and others

Internet Censorship is Widespread

- Practiced in 59 countries around the world
 - Many western countries
 - Several electoral democracies (e.g., S. Korea, Turkey) have significant censorship
 - YouTube blocked in Turkey for two years
 - Many North Korean sites blocked in South Korea
- Twelve countries have centralized infrastructure for monitoring/blocking

Source: Open Network Initiative

Why do countries censor?

 Political stability August 11, 2011, 12:21 PM

In British Riots, Social Media and Face Masks Are the Focus

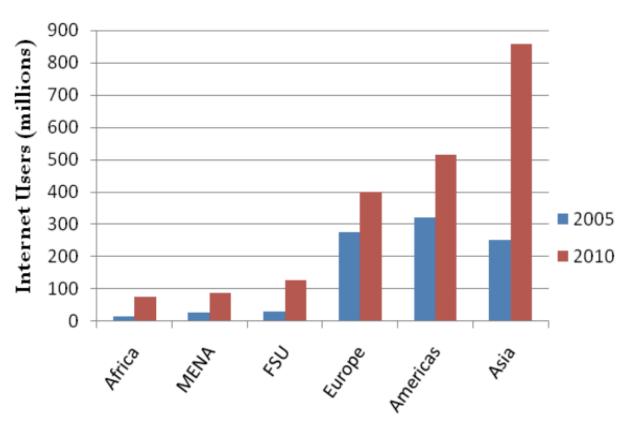
Prime Minister David Cameron <u>told Parliament on Thursday</u> that if people are using social media to organize violence, as has been reported, than "we need to stop them." He asked the police to tell him if they need "new powers" to do so.

National security

Internet 'Kill Switch' Legislation Back in Play

By David Kravets ☑ □ January 28, 2011 | 6:09 pm | Categories: Cyber Warfare, Cybersecurity

NEWS - Written by Renai LeMay on Friday, June 24, 2011 14:34 - 28 Comments

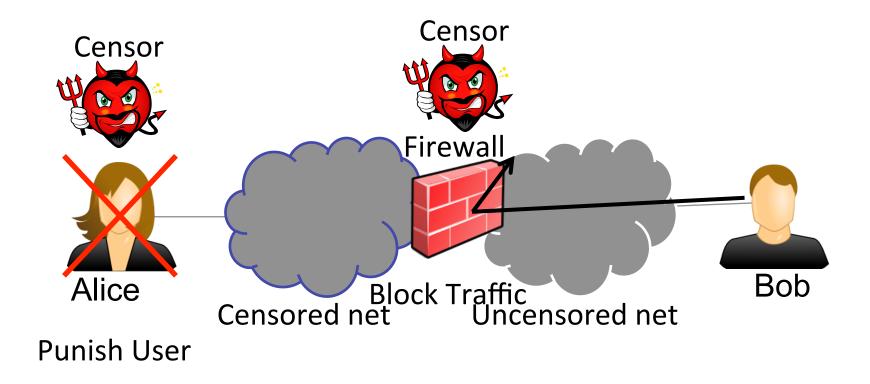


Voluntary ISP filter attracts global attention

This week, Telstra and Optus reiterated that they were still planning to start filtering their customers' traffic for a list of internet addresses provided by the Australian Communications and Media Authority which it has deemed to contain child pornography. The initiative is a stop-gap measure agreed to by ISPs and the Federal Government in mid-2010 while a review is carried out into the Refused Classification category of content which the wider mandatory filter will block.

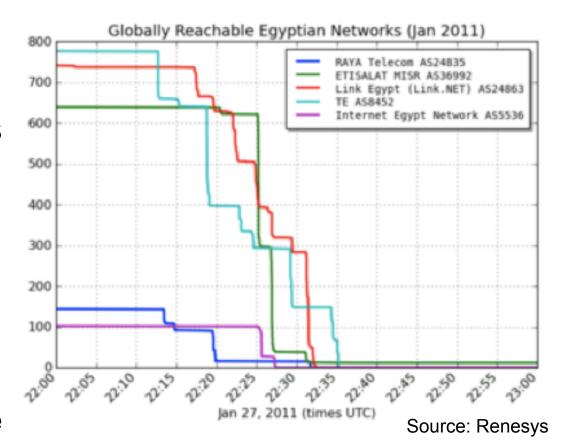
Trend: Increasing Number of Users in Non-Western Regions

Internet Users by Region



^{*} Source: International Telecommunications Union

Examples of Recent Trends


- In 23 countries, a blogger or Internet user was arrested for content posted online
 - Chinese woman sent to labor camp for satirical Twitter message
 - Indonesian woman fined for an email complaining about a local hospital
- Twelve countries instituted bans on Twitter, YouTube or some other online social media service

Conventional Internet Censorship

Technical Enforcement: Blocking

- ISP acts on instructions from a judge, government official, etc.
 - Filtering: IP address, DNS
 - Keyword-based: search for keyword in URL
 - China, Iran, Tunisia have such systems in place
- Common: Use of centralized infrastructure (e.g., routing)

Questions

- How widespread is Internet censorship?
- How do countries enforce censorship?
 - How does it evolve over time?
 - Does it coincide with other events?

How can citizens circumvent it?

 How (else) might a government (or organization) exercise control over its citizens?

Outline

- Measuring censorship
 - Censorship is widespread, but the extent and evolution of practices are unknown
- Circumventing censorship
 - Deniability is a key challenge
 - Bootstrapping remains significant open problem
- Combating manipulation
 - Analysis of Twitter behavior of propagandists
 - Measurement and illustration of filter bubbles

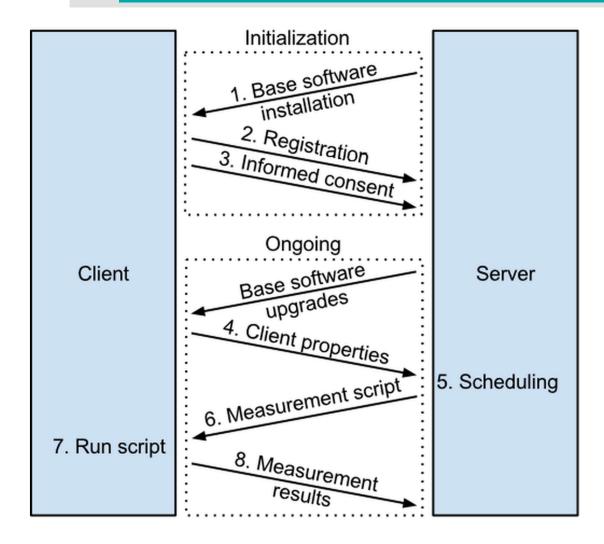
Monitoring Censorship

- Herdict: Crowdsourcing reports of Internet censorship
- Google Transparency Report: Monitor reachability of online services

Monitoring Censorship: Challenges

- "Censorship" is ill-defined
 - Personalization may be confused with censorship
 - Performance problems may be confused with censorship
- Measurement tools can be blocked
 - Measurements may be blocked
 - Reports may be blocked
- Measurements tough to characterize
 - Reports may be falsified
- Running the tool may be incriminating

Problems with Current Approaches


- Biased by what users choose to report
- Lack of corroborating, open measurements
- Not general (focused only on limited services)
- Not longitudinal
- Do not cover a set of ISPs or access modes within a country
- Do not run on a diversity of hardware

Design Requirements

- Easy to install and use: Should be easy to install and run on a variety of platforms.
- Cross-platform: Tests should be write once, run anywhere.
- Flexible: Should be capable of implementing a wide variety of experiments, including many from the test specifications from existing projects (e.g., OONI).
- Secure: Arbitrary remote code execution is bad.
- Extensible: Should be capable of incorporating new experiments.

Censorscope: Design Overview

https://github.com/projectbismark/censorscope

- User installs base software and registers with server
- Server periodically pushes upgrades
- Client sends properties
- Client downloads measurement script, written in a Lua-based DSL
- Client returns measurement results

Target Platforms

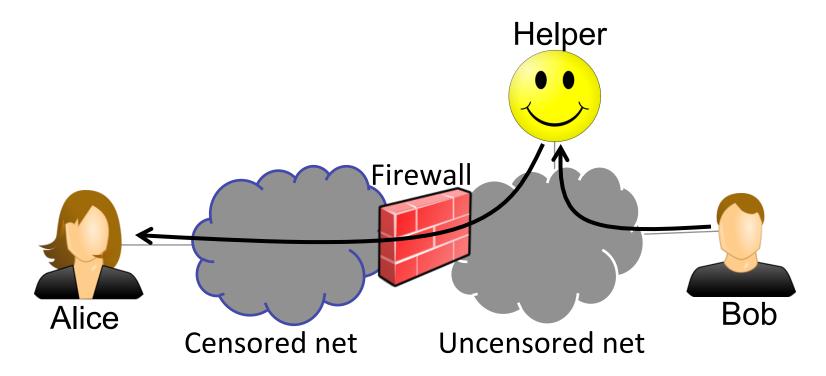
Exploit Existing Deployments

- BISmark: Home routers
 - 200+ home routers deployed in 20+ countries
- Android: Mobile devices (MySpeedTest)
 - 5,000 installations in 30+ countries

Expand to New Deployments

- Linux/MAC OS X: End hosts
- Fathom: Browsers

Tests: Planned and In-Progress


- DNS lookups
- TCP connectivity
- HTTP requests
- DNS spoofing
- DNS tampering
- HTTP host tampering
- Bridget
- Block page detection
- Web performance measurement

Seeking help developing tests for a variety of platforms.

Outline

- Measuring censorship
 - Censorship is widespread, but the extent and evolution of practices are unknown
- Circumventing censorship
 - Deniability is a key challenge
 - Bootstrapping remains significant open problem
- Combating manipulation
 - Analysis of Twitter behavior of propagandists
 - Measurement and illustration of filter bubbles

General Approach: Use a Helper

The helper sends messages to and from blocked hosts on your behalf

Circumvention Systems

Anonymous routing systems

Community wireless networks

Distributed services

Significant Challenge: Deniability

- Easy to hide what you are getting
 - E.g., just use SSL or some other confidential channel
- And sometimes easy to "get through" censors
 - Reflection (e.g., Tor)
- But hard to hide that you are doing it!

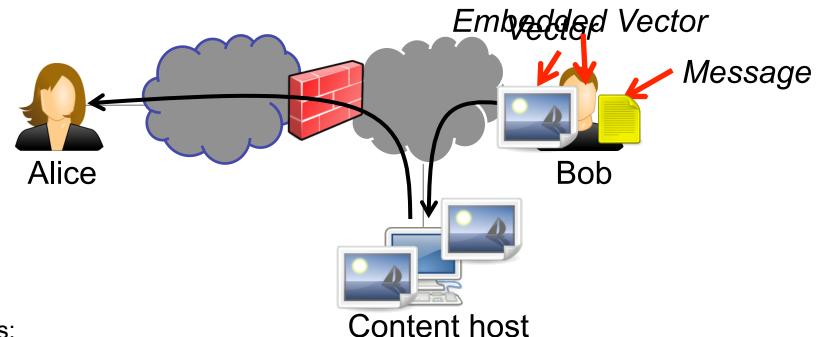
Proxies & Mixnets: Not Deniable

Covert Channels over HTTP: Requires infrastructure

Design Principles

- Redundancy and hiding to thwart disruption
 - Erasure coding, steganography (from coding, message hiding)
- Disguise content retrieval as innocuous activity
 - Distributed hash table lookup (from distributed systems)
- Decouple sending and receiving of messages
 - User-generated content sites as drop sites (from the "real world")

Collage: Let User-Generated Content Help Defeat Censorship


User-generated content hosts

Alice

Bob, a Flickr user

- Robust by using redundancy
- Users generate innocuous-looking traffic
- No dedicated infrastructure required

Collage in Detail

Collage steps:

- 1. Obtain message
- 2. Pick message identifier
- Obtain cover media
- 4. Embed message in cover
- 5. Upload UGC to content host
- 6. Find and download UGC
- 7. Decode message from UGC

Step 2: Pipthide Chiggs in the Control of the Contr

- Mappitiphitisonsphedifitos
- Generates deersecipient should know it 23

Collage: Challenges

- Determining how to embed the message
 - Discovery should be difficult
 - Disruption should be difficult
- Agreeing on where to embed the message
 - Alice and Bob must agree on a message identifier

- Designing the process to be deniable
 - Alice's process of retrieval should look "normal"

How to Embed the Message

- Encrypt the message using the identifier
- Generate chunks using erasure coding
 - Generate many chunks, recover from any k-subset
 - Allows splitting among many vectors, robustness
- Embed chunks into vectors

Collage steps:

- 1. Obtain message
- 2. Pick message identifier
- 3. Obtain cover media
- 4. Embed message in cover
- 5. Upload UGC to content host
- 6. Find and download UGC
- 7. Decode message from UGC

Steganography: hard to detect

Watermarking: hard to remove

Do the reverse to decode

Where to Embed the Message

- Crawling all of Flickr is not an option
- Must agree on a subset of content on usergenerated content sites without any immediate communication

Solution: A predictable way of mapping message identifiers to subsets of content hosts.

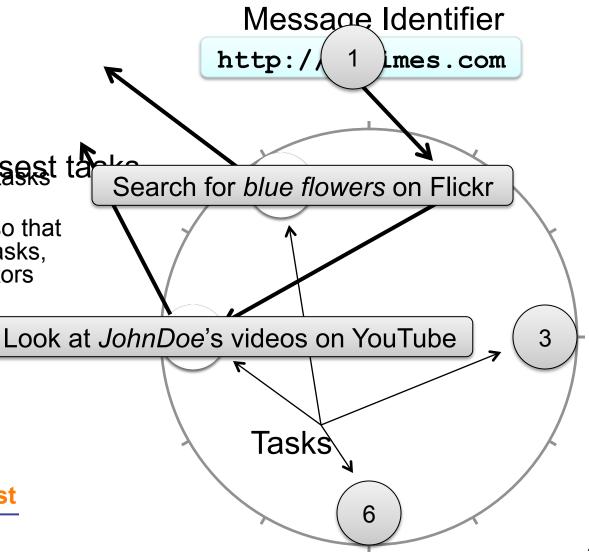
Collage steps:

- 1. Obtain message
- 2. Pick message identifier
- 3. Obtain cover media
- 4. Embed message in cover
- 5. Upload UGC to content host
- 6. Find and download UGC
- 7. Decode message from UGC

Making the Embedding Deniable

Tasks

Hash the identifier

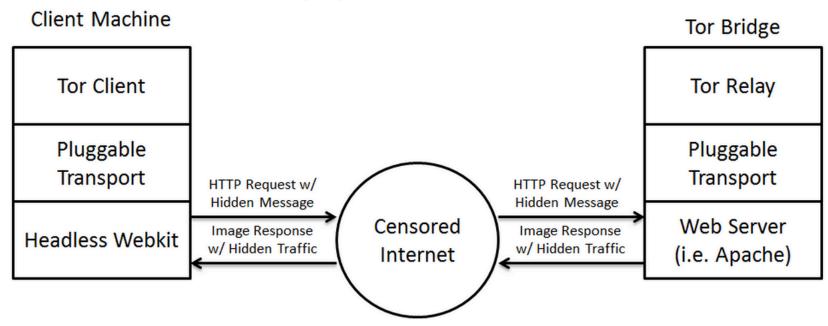

Hash the tasks

3. Mae identifiem the class ta

 Senders publish vectors so that when receivers perform tasks, they get the sender's vectors

Collage steps:

- Obtain message
- 2. Pick message identifier
- 3. Obtain cover media
- 4. Embed message in cover
- 5. Upload UGC to content host
- 6. Find and download UGC
- 7. Decode message from UGC



Feasibility Case Study

	News Articles	Covert Tweets
Content host	Flickr	Twitter
Message size	30 KB	140 Bytes
Vectors needed	5	30
Storage needed	600 KB	4 KB
Sending traffic	1,200 KB	1,100 KB
Sending time	5 minutes	60 minutes
Receiving traffic	6,000 KB	600 KB
Receiving time	2 minutes	½ minute

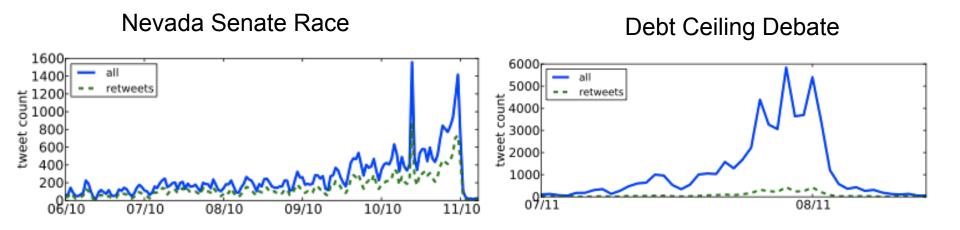
Experiments performed on a 768/128 Kbps DSL connection

Ongoing Work: New Tor "Pluggable Transports"

- Collage and Infranet: Slow performance
 - ...and strong adversary model
- What about an adversary that can examine but has limited storage capability?

Outline

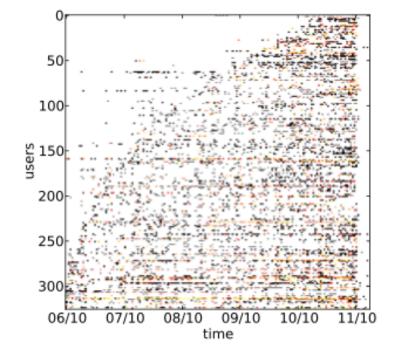
- Measuring censorship
 - Censorship is widespread, but the extent and evolution of practices are unknown
- Circumventing censorship
 - Deniability is a key challenge
 - Bootstrapping remains significant open problem
- Combating manipulation
 - Analysis of Twitter behavior of propagandists
 - Measurement and illustration of filter bubbles

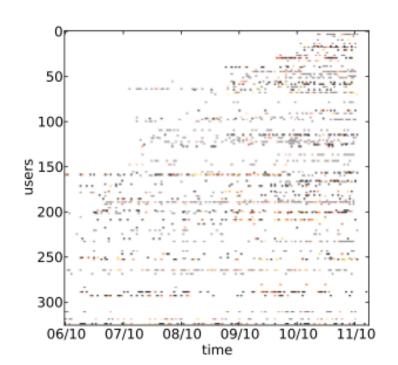

Manipulation and Propaganda

Sock-puppeting: False appearance of independent speakers

Astroturfing: False appearance of a grassroots movement

Detecting Propaganda


- How can Twitter be used to affect public opinion?
- Can we detect when Twitter is being used to spread propaganda?



Four Properties of Propagandists

- Higher fraction of retweets
- More bursty tweeting volumes
- Higher daily volumes
- Quick retweeting

bias: Measuring the Tweeting Behavior of Propagandists by Cristian Lumezanu, Nick Feamster, and Hans Klein. In the *Sixth International AAAI Conference on Weblogs and Social Media (ICWSM)*, 2012.

Personalization as "Filter Bubble"

"A squirrel dying in front of your house may be more relevant to your interests right now than people dying in Africa"

Mark Zuckerberg

- Online personalization is creating situations where we only see things that already suit our own tastes.
- Personalization can also be exploited.
- Goal: "Burst the filter bubble." Show the user information that might otherwise be hidden.

Bobble: Bursting the Filter Bubble

Google 2 Search Results Planet Lab Google **Nodes Execute query** Bobble Server Bobble Planet Lab Node As different users Search Results Search Results

User

Search Term & Results

- From different vantage points
- With different history (e.g., cookies)
- **Compare differences** in results
 - What shows up on the first page?
 - Where does it show up?
 - When it doesn't appear, what are the possible explanations?

Bursting the Filter Bubble

scott shenker

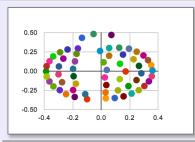
Q

Scott Shenker | EECS at UC Berkeley

www.eecs.berkeley.edu/Faculty/Homepages/shenker. Scott Shenker. Professor. Research Areas. Internet A Networks, Datacenter Infrastructure, Large-Scale Distr

Scott Shenker | ICSI

www.icsi.berkeley.edu/icsi/about/board/shenker Leader, New Initiatives Group Chief Scientist shenker Shenker is a professor in the Electrical Engineering ar


Networking Leader Scott Shenker Appointe www.icsi.berkeley.edu/icsi/.../shenker-appointed-chief August 10, 2012. ICSI has appointed Scott Shenker a who has led ICSI's Networking Group since 1998, will I

www.eecs.berkeley.edu/Research/Projects/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu/Research/.../shenkeley.edu

Scott Shenker - Wikipedia, the free encyclop

en.wikipedia.org/wiki/Scott_Shenker

Scott Shenker is a professor of computer science at UC Berkeley. He is also the leader of the Networking Group and the Chief Scientist of the International ...

■ 60(60) Scott Shenker | EECS at UC Berkeley www.eecs.berkeley.edu/Faculty/Homepages/shenker.html

60(54) Scott Shenker | ICS|
 www.icsi.berkeley.edu/icsi/about/board/shenker

60(47) Scott Shenker - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Scott Shenker

60(38) DBLP: Scott Shenker

www.informatik.uni-trier.de/~ley/pers/hd/s/Shenker:Scott.html

60(34) Scott Shenker – Professor, EECS, UC Berkeley and ICSI www.opennetworking.org/about/board-and-officers/227-scott-shenker

60(32) Scott Shenker - Google Scholar Citations scholar.google.com/citations?user=GUAoEcAAAAAJ&hl=en

58(16) NAE Website - Prof. Scott J. Shenker www.nae.edu/56115.aspx

Prof. Scott Shenker - Gentle Introduction to Software-Defined ...

www.youtube.com/watch?v=eXsCQdshMr4

33(9) Scott Shenker at ACIRI

http://bobble.gtisc.gatech.edu/

Summary

- Measuring censorship
 - Extent and evolution of practices are unknown
 - Come help us measure censorship!
 - https://github.com/projectbismark/censorscope
- Circumventing censorship
 - Deniability is a key challenge
 - Covert channels exist (Collage, Infranet)
 - Bootstrapping remains significant open problem
- Combating manipulation
 - Analysis of Twitter behavior of propagandists
 - Measurement and illustration of filter bubbles

Other Challenges: Self-Censorship

 Censoring oneself for fear of backlash or retribution

- Occurs in many countries
- Essentially undocumented

BEIJING | Mon Sep 19, 2011 2:01pm IST

(Reuters) - China's biggest micro-blog operator, Sina Corp, is enhancing self-censorship to stamp out "rumours" as it copes with explosive growth in user numbers, its chief executive Charles Chao said, according to a news report on Monday.

Amanpour: CNN practiced selfcensorship

CNN's top war correspondent, Christiane Amanpour, says that the press muzzled itself during the Iraq war. And, she says CNN "was intimidated" by the Bush administration and Fox News, which "put a climate of fear and self-censorship."

As criticism of the war and its aftermath intensifies, Amanpour joins a chorus of journalists and pundits who charge that the media largely toed the Bush administrationline in covering the war and, by doing so, failed to aggressively question the motives behind the invasion.