

Roni Even

Jonathan Lennox

Qin Wu

The Session Description Protocol (SDP)
Application Token Attribute

draft-even-mmusic-application-token-01
IETF 88

Introduction

•  SSRC identifies an RTP stream in an RTP session.

•  SSRC is in the RTP header.

•  SSRC may change during a session

•  In SDP media streams are represented in m-lines.

•  An m-line can represent a media source (unified) with multiple media
streams (e.g. simulcast, FEC)

•  An m-line can represent a single media stream.

•  Multiple m-lines can be bundled to allow multiplexing of multiple media
streams. (from one or multiple sources)

•  Question:

•  How to map media streams in SDP m-lines to RTP streams identified by
SSRC.

•  How to map media streams in non SDP application protocols (CLUE capture
encoding, RTCmediastreamtrack) to SDP and RTP streams

2

Mapping option 1 – SSRC based

• Mapping of RTP media streams to stream description in an m-line
• Specifying the SSRCs of the RTP stream in the m-line and

binding to a stream description when there is more then one
RTP stream specified by the m-line.

• Using a=ssrc and srcname attributes. (example in simulcast
draft)

• The SSRC must be defined in the SDP and not by the RTP
layer

• How to map media streams in SDP (Simulcast, FEC) and non SDP
application protocols (CLUE capture encoding,
RTCmediastreamtrack) streams

• Each application defines its own way
• Config-id, SDP group, SDP label, msid.

3

Option 2 – application token

• Define a token “appID” associated with an RTP stream, allowing
the semantics of the stream with a token to be defined by the
application.

• The binding to SSRC will be done using RTP header extension and
RTCP SDES but may also be done in the SDP.

• An application may receive a new RTP stream replacing an existing
RTP stream having the same appID, or a new RTP stream with a
new appID.

• The appID can be used for an m-line
• a=appID:2 (a=SSRC is not required)

• Declare that this appID is associated with this m-line.
•  In SDP unified case, the appID can be tied to a specific attribute

• a= appID:1 imageattr:98 send [x=480,y=320]

4

Advantages of application token

• Leaves SSRC values to the RTP stack, when desired
• Robust to SSRC collision
• Keeps protocol layering cleaner – don’t need to know SSRC

when making an offer
• Avoids early-media race conditions

• SSRC values can only be specified by a sender
• Allows dynamic mappings between sources

• E.g., loudest-speaker switching
• Appid moves from one source to another
• E.g., “Selective Forwarding Middlebox” RTP topology

5

RTP / SDP synchronization

• When mapping a specific SSRC to an appID in SDP, need to keep
consistency when the mapping is changed using SDES or RTP
header extension.

• Propose that RTP always wins (SDES / RTP Header extension)
•  I.e., once you’ve seen an RTP mapping, ignore subsequent

SDP-based ones
• Other option – never use a=appid:x SSRC:value, just use

a=appId and the RTP SDES and header extensions

6

Open issue: are header extensions/RTCP
reliable?

• Argument’s been made that we need SDP as backup, because
header extensions and RTCP might be dropped.

•  Is this really possible?
• Possible to place header extensions such that if packets carrying

them are lost, stream is useless anyway (e.g. on I-Frames).
• Or just always send them, if you’re paranoid.

• Middleboxes that strip header extensions and RTCP – but don’t
otherwise interfere in RTP – seem very unlikely.

• Remember these are multi-SSRC sessions, and probably
SRTP encrypted.

• Support for this mechanism is negotiated, so can always be
negotiated off. If middleboxes participate in signaling,
there’s no problem.

7

