
ICE AND WEBRTC
draft-thomson-mmusic-ice-
webrtc-01

BAD ASSUMPTIONS

�  ICE makes the following assumptions:

�  that consent cannot be revoked

�  that there is only one ICE agent operating

�  that the signaling is created by an entity that is
acting in good faith

�  Only the first is being addressed

2

CONCURRENT ICE AGENTS

�  Browsers allow for concurrent ICE agents

�  In the same tab/origin to accomplish varied tasks

�  Cross tab/origin

�  Agents may be unaware of each other, even in
the same tab

�  Multiple ICE agents competing cause

�  Increased check volume

�  NAT bindings might be dropped (*research
continuing)

3

BAD SIGNALING

�  Bad signaling opens up interesting possibilities
�  e.g., A large ufrag can inflate the size of a check

significantly

�  e.g., Adding bogus candidates can increase the
number of checks

�  In WebRTC we have to assume that the
signaling is bad

�  We can’t allow applications to cause browser to
misbehave

�  Warning! Using ICE doesn’t require user consent
or action

4

WHAT COULD POSSIBLY GO
WRONG?

�  Quick calculations

�  100 candidate pair limit

�  x A check every 20ms

�  x 384 (or 404) byte checks

�  x number of ICE agents

�  = A lot of packets (my current record is almost
3Mbps)

�  That’s assuming constant pacing; actual
numbers can be higher

5

OPTION 1: OOPS, HACK

�  Cap bandwidth, globally

�  Calculations in the draft

�  Attempt to define “legitimate use” for 1 Agent

�  “legitimate use” might be 64kbps

�  Suggested cap: 96kbps

6

OPTION 2: HARD WORK

�  Define global pacing for all ICE agents

�  This introduces some interesting interaction
problems

�  RTO needs looking at (ICEbis work perhaps?)

7

FIX RTO

�  RTO is calculated such that initial checks all go
out before any retransmissions start

�  Not that many implementations respect this

�  Competition between agents could delay RTO
in unpredictable ways if this rule is observed

�  Either way, competition is potentially bad

8

TRICKLE COMPATIBLE
ALGORITHM

Pairs

Pair

A. Normal Candidate
Pairing Process
+ Asynchronous
Trickling

Candidate Pairs
Ordered Strictly
By Priority

Pacing Timer

Check
s

Check
s

Candidate Pairs
Awaiting Checks

B. if available

B’. if no checks
outstanding

RTO Timer

Send
Check

C. On RTO

9

DEALING WITH CONTENTION

�  Concurrent ICE agents compete

�  Need to ensure that one tab/origin can’t starve
others out

�  May want to hide activity from other origins

�  Definitely want to hide connectivity check status,
but relying on the ufrag/password being different
should suffice

10

