draft-ietf-mpls-forwarding-02

MPLS Forwarding Compliance and Performance Requirements Curtis Villamizar (OCCNC) Kireeti Kompella (Contrail) Shane Amante (Level 3) Andrew Malis (Verizon) Carlos Pignataro (Cisco)

Note: Authors believe this version is ready for WGLC.

Two Parts to Presentation Slides

- Problem addressed by this work
- Backup Slides not presented
 - (solution oriented)

Motivation

- Initial Motivation
 - Common mistakes among chip makers with limited MPLS experience
- Later Motivation
 - Missed requirements among chip makers and system makers
 - High cost of not getting it right for -
 - * chip makers system makers deployed base

High cost of not getting it right

- cost to chip vendor
 - may be transitioning from Layer-2 only to +IP to +MPLS
 - mistakes may result in respin (costly) or redesign (worse)
 - system designers don't want the older (buggy) chip
- cost to system vendor
 - may need a chip upgrade or even worse change chip sets
 - customer (SP or other) may not want the older cards
 - may result in large scale free or low cost card swap
- cost to deployed base
 - too often problems are found after deployment
 - bugs can hinder deployment of new capabilities or services
 - may be stuck with bugs if caught after evaluation period
 - some faulty access equipment may be around for a long time

Scope

- In scope
 - MPLS forwarding
 - base PW forwarding + CW and sequence
 - MPLS OAM + MPLS-TP OAM
 - multipath and load balancing entropy
 - recommendations on fast path vs slow path OAM
 - DoS protection
- Out of scope
 - specific PW AC and NSP
 - PW applications such as various forms of VPN
 - load balancing of tunneling protocols within IP
 - MPLS over other (ie. GRE, L2TP, UDP)
 - implementation details

Spotlight on Specific Problems

- Deep Stack Problems
- Lack of PW CW support in edge equipment
- Small Packet Burst Tolerance
- Packet Size Performance Sawtooth
- DoS and OAM Hardware Assist

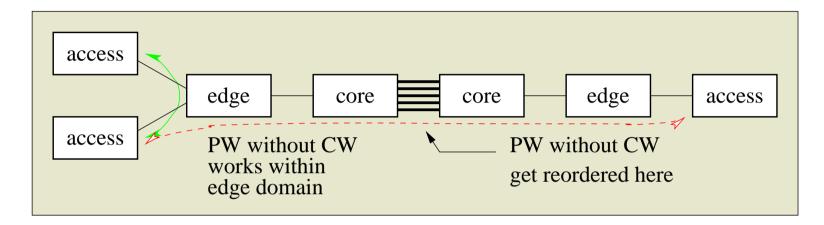
Deep Stack Problems

- Most severe problems occur with poor multipath implementations
- PHP insures that at most one POP or SWAP is needed.
- (OTOH MPLS-TP mandates use of UHP)
- To get adequate load split, entropy from multiple label entries is needed (preferably all label entries), plus IP headers if present.

Deep Stack - What's wrong with this picture?

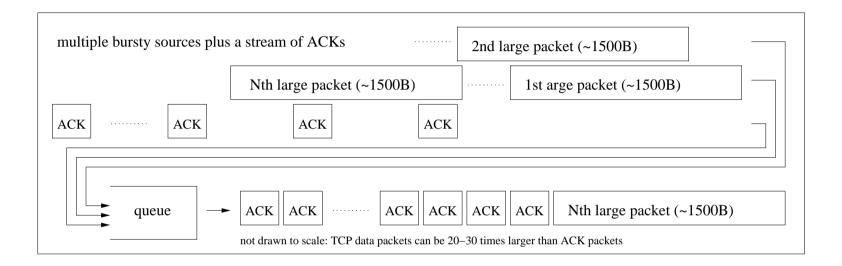
MPLS label nu	mber (20 bits)		TC	S	TTL (8 bits)
MPLS label nu	mber (20 bits)		TC	S	TTL (8 bits)
MPLS label nu	mber (20 bits)		TC	S	TTL (8 bits)
MPLS label nu	mber (20 bits)		TC	S	TTL (8 bits)
V(4,6) IHL	DSCP	Total I	Length		
Identification		Flags	Frag	m	ent Offset
TTL	Protocol	Heade	r Chec	ks	um
	Sourc	eAddress			
	Destinati	on Addre	\$S		
				.	

	Source Port		Destination Port	
	Sequ	uence Number		
	Acknow	ledgement Nur	nber	
Offset	Reserved Fl	ags	Window	
	Checksum		Urgent Pointer	

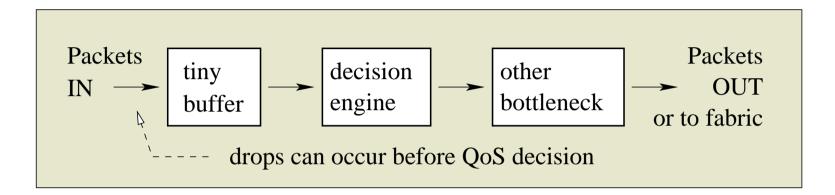

MPLS	label number	(20 bits)		TC	S TTL (8 bits)
MPLS	label number	(20 bits)		TC	S TTL (8 bits)
MPLS	label number	(20 bits)		TC	S TTL (8 bits)
				1	
MPLS	label number	(20 bits)	$\left[\begin{array}{c} \cdot \\ \cdot \end{array} \right]$	TC	S TTL (8 bits)
0.0.0.0	Flags FRG	Length	Seq	uence 1	Number
	Destinat	tion MAC	Address (DMAC	C)
	DMAC (con	t.)		SMAG	C (cont.)
	Sourc	ce MAC A	ldress (S	MAC)	
	EtherType				

hint: nothing is wrong, except for a few chip makers

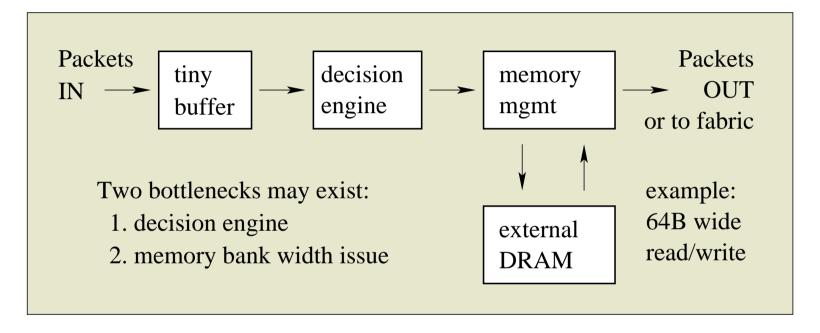
Deep Stack Examples


- Stacks with three or four labels:
 - (3) RSVP-TE, ELI, EL, (IP payload)
 - (3) LDP, PW, fat-PW, (CW + PWE3 payload)
 - (4) RSVP-TE, ELI, EL, L3VPN, (IP payload)
 - (4) FRR, RSVP-TE, LDP, L3VPN, (IP payload)
- Stacks with more that four labels:
 - (5) RSVP-TE, LDP, ELI, EL, L3VPN, (IP payload)
 - (5) FRR, RSVP-TE, LDP, ELI, EL, (IP payload)
 - (6) PSC-1, ELI, EL, RSVP-TE, ELI, EL, (IP payload)
 - (8) PSC-1, ELI, EL, RSVP-TE, ELI, EL, LDP, L3VPN (IP payload)
 - (10) FRR, PSC-1, ELI, EL, RSVP-TE, ELI, EL, LDP, PW, fat-PW, (CW + PWE3 payload)
- label stacks can get larger than 2-3 labels
- where encountered, these will not be "rare occurances"

Lack of PW CW support in edge equipment


- network cores need to use multipath due to high core to core capacities
- PW from access going through same edge may work fine
- PW passing through core will experience packet reorder if CW is not used

Cause of Small Packet Bursts


- Above is a simplistic example capable of creating a burst.
- The phenomenon is known as "TCP ACK Compression".
- Multiple streams of evenly spaced ACKs and multiple streams of bursty TCP data (for example during slow start) can cause large bursts.
- Bursts up to 200 TCP ACKs (40 byte) have been observed in service provider networks.

Small Packet Burst Tolerance

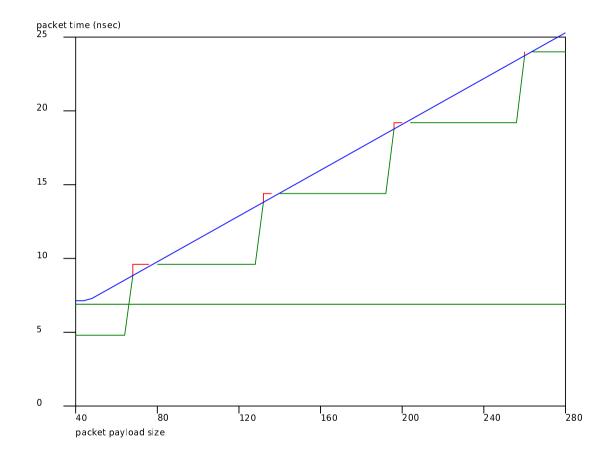
- QoS agnostic drops can occur before QoS decision is made.
- A bottleneck downstream can have the same effect if it backpressures the decision process.

Packet Size Performance Sawtooth

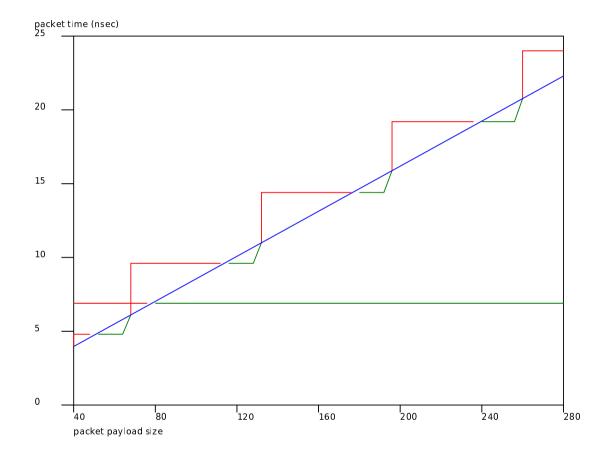
- Result is a sawtooth in max Mpps vs packet size graph
- Does it matter? Maybe not if memory management can cache and buffer bursts rather than backpressure

Packet Size Performance Sawtooth - example

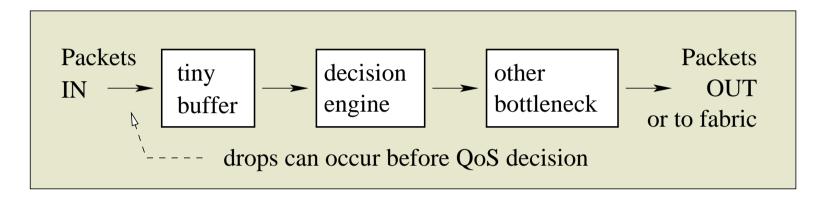
- Example (made up but somewhat realistic):
 - decision engine speed 6.9 nsec (145 Mpps)
 - one packet enters decision pipeline per 6.9 msec
 - memory limit one 64B wide read/write per 4.6 nsec
- 100G Ethernet with 802.3 (high overhead 46B)
 - 12 B gap, 7 B preamble, 1 B start of frame
 - 6 B DMAC, 6 B SMAC, 2 B length, 8 B LLC/SNAP, 4 B FCS
 - 46 B overhead + 40 B payload = 86 B
 - -7.14 nsec / 40 B pkt = 140 Mpps (@ 103.125 Gb/s)
- GFP/ODU4 (low overhead 12B)
 - no gap, no preamble, no start of frame
 - 8 B headers, 4 B FCS
 - 12 B overhead + 40 B payload = 52 B
 - 3.97 nsec / 40 B pkt = 252 Mpps (@104.782 Gb/s)


Performance Sawtooth - Encapsulation Efficiencies

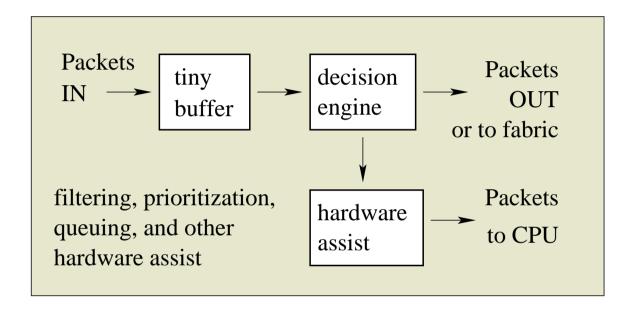
Gap
Gap (12 Bytes)
Gap
Preamble (7 Bytes)
Preamble (cont.) SoF (1 Byte)
Destination MAC Address (DMAC)
DMAC (cont.) SMAC (cont.)
Source MAC Address (SMAC)
Length LLC/\$NAP
LLC/SNAP (3+5 Bytes)
LLC/SNAP
V(4,6) IHL DSCP Total Length
Identification Flags Fragment Offset
TTL Protocol Header Checksum
Source Address
Destination Address
Source Port Destination Port
Sequence Number
Acknowledgement Number
Offset Reserved Flags Window
Checksum Urgent Pointer
Frame Check Sequence (FCS)


Length	CHEC		
PFI PTI EXI UPI	tHEC		
V(4,6) IHL DSCP	Total Length		
Identification	Flags Fragment Offset		
TTL Protocol	Header Checksum		
Source	Address		
Destination Address			
Source Port	Destination Port		
Sequence Number			
Acknowledgement Number			
Offset Reserved Flags	Window		
Checksum	Urgent Pointer		
Frame Check Sequence (FCS)			

Useful UPI values: UPI 0x0d = GFP–F MPLS UPI 0x0f = GFP–F ISIS/CLNP UPI 0x10 = GFP–F IPv4 UPI 0x11 = GFP–F IPv6


Performance Sawtooth - prior example - 100GbE

Performance Sawtooth - prior example - GFP/ODU4



Small Packet Burst Tolerance & QoS

- QoS agnostic drops can occur before QoS decision is made.
- The packets that get dropped may include high priority traffic which is highly drop sensitive.
- A small buffer to deal with bursts of small packets avoids this problem. (Correst value of "small" is an exercise for the audience).

DoS and OAM Hardware Assist

- Packet rate to CPU has to be limited for some types of traffic.
- Filtering is needed to get rid of obviously bogus traffic during DoS.
- General purpose CPU is easily swamped in high volume attacks or major OAM misconfiguration.

Discussion

- anyone read this or prior versions?
- comments and/or flames?
- questions?

BACKUP SLIDES

- No intention to present the remaining slides
- May refer to specific slides if relevant to questions/discussion

Basics - Base

- Base RFC3031 + RFC3032 + RFC3209
- TTL processing RFC3443
- MPLS Explicit NULL RFC4182
- Diffserv RFC3270 + RFC4124 + RFC5462
- MPLS ECN RFC5129
- G-ACh and GAL RFC5586
- link layer codepoints RFC5332
- PW ACH RFC5085; MPLS G-ACh RFC5586
- Entropy Label RFC6790

Basics - MPLS Special Purpose Labels

- label values 0-15 RFC3032
 - IANA: Multiprotocol Label Switching Architecture (MPLS) Label Values
- draft-ietf-mpls-special-purpose-labels

- IANA: Extended Special Purpose MPLS Label Values

Basics - MPLS Differentiated Services

- base RFC2474 + RFC2475 + RFC5462
- E-LSP and L-LSP RFC3270
- class-type (CT) mapping to TC-¿PHB RFC4124

Basics - Time Synchronization

- NTP and PTP are important
- PTP over MPLS draft-ietf-tictoc-1588overmpls
- this work may be changing and needs to be watched

Basics - Uses of Multiple Label Stack Entries

- lists many uses of multiple labels in label stack
- practical cases now exist for four or more
- theoretical scenarios can reach eight or more

Basics - MPLS Link Bundling

- early and limited MPLS multipath RFC4201
- all-ones component spreads traffic like ECMP (using hash)
- other mode places each LSP on a specific component

Basics - MPLS Hierarchy

- of interest is Packet Switch Capable (PSC) RFC4206
- four levels of hierarchy PSC1-PSC4 (plus implied PSC-0)

Basics - MPLS Fast Reroute (FRR)

- two modes "detour" and "bypass" RFC4090
- detour explicitly signals path from PLR to merge
- bypass uses bypass LSP and is far more common
- bypass requires use of platform label space

Basics - Pseudowire Encapsulation

- arch RFC3985
- control word (CW) RFC4385 (motivation in RFC4928)
- VCCV RFC5085 (associated channel in RFC4385)
- pseudowire sequence number is useful for some payload types

Basics - Layer-2 and Layer-3 VPN

- impact on midpoint LSP within scope
- L2VPN and L3VPN add a label
- encap/decap and VRF at LER is out of scope

MPLS Multicast

- layer-2 encaps clarification in RFC5332
- signaled using RSVP-TE [RFC4875] or LDP [RFC6388]
- RSVP-TE uses root initiated join
- LDP uses leaf initiated join (more like IP multicast)
- where to replicate is an local matter but needs careful thought
- LSR may be leaf, replicating, or bud wrt a P2MP LSP
- MP2MP similar but with multiple senders possible

Packet Rates

- dropping packets is bad! (duh)
- number of packets per second depends on packet size
- long bursts of small packets (about 40-48 byte) common
- ethernet rounds to 64, but not everything is ethernet
- need small buffer before decision engine
- to avoid dropping high priority traffic need -either-
 - handle sustained 40 byte (plus label) packets -or-
 - absorb bursts of small packets before decision engine

Multipath

- very important for large SP important for others as well
- adequate balance requires adequate entropy
- entropy from stack alone is insufficient look for IP headers
- common practice is to reinspect for entropy at each hop
- entropy label may simplify task of midpoint LSR

Pseudowire Control Word

- PW CW support is essential for LSR at all tiers
- PW without CW get out-of-order when crossing multipath in core
- not supporting CW will not earn friends

Large Microflows

- Large microflows (ie: Gb/s to tens of Gb/s) are trouble for multipath
- active management of the hash space is local issue and out of scope

Pseudowire Flow Label

- some PW types are OK with reordering if microflows stay ordered
- examples are Ethernet and FR
- flow label (fat-pw) allows multipath
- fat-pw preserves order of microflows
- avoids large microflow problems

MPLS Entropy Label

- like PW flow label entropy label helps with multipath
- RFC6790 defined entropy label indicator (ELI) and EL
- entropy label allows ingress to extract entropy
- save deep packet inspection at midpoint LSR
- allows truncation of label stack inspection

Fields Used for Multipath Load Balance

- four subsections
 - MPLS Fields in Multipath
 - IP Fields in Multipath
 - Fields Used in Flow Label
 - Fields Used in Entropy Label
- too little time to go into details on this

MPLS-TP and UHP

- Egress UHP POP, counter, then lookup, then another counter
- Using PSC hierarchy can result in multiple lookup, POP, count per packet
- performance impacts if this isn't done right

Local Delivery of Packets

- packets sent to local general purpose CPU can swamp it
- hardware support is needed to protect CPU
- prevents accidental and malicious (DoS, DDoS) outage

DoS Protection

- filtering in hardware before sending to CPU
- GTSM is special filtering RFC5082
- involved topic see draft basics covered

Extent of OAM Support by Hardware

- MPLS OAM, PW OAM and MPLS-TP OAM discussed in draft
- OAM can swamp a general purpose CPU
- hardware support or assist recommended for some OAM flavors

Number and Size of Flows

- some hardware can't handle very large microflows
- some hardware can't handle huge number of microflows
- both problems are bad latter may be worse

Use of RFC 2119 Keywords in this draft

- RFC2119 all upper case keywords used when:
 - stating a requirement that comes from an existing RFC
 - implied requirement needed to conform to existing RFC
 - clearly marked "advice" with strong reasons given

Are there omissions?

• hopefull not but it would help if WG thought about this

Potential Topics of Discussion

- in scope vs out of scope
- use of RFC2119 language in an informational document
- reasons for recommending small packet burst tolerance
- details of recommendations on multipath
- DoS and OAM hardware assist
- would profiles be overkill?
 - core vs edge vs access vs enterprise vs data center, etc