Algorithm for Ordered Metric Adjustment draft-zxd-rtgwg-ordered-metric-adjustment-00

Xudong Zhang, Gang Yan Huawei Technologies

IETF 88, Vancouver, Canada

Background Introduction

- The micro-loop route is a important topic in the IP domain.
- There are some RFCs/Draft in RTGWG to discuss this issue:
 - ✓ RFC5715: A Framework for Loop-Free Convergence
 - ✓ RFC6976: Framework for Loop-Free Convergence Using the Ordered Forwarding Information Base (oFIB) Approach
 - ✓ draft-litkowski-rtgwg-uloop-delay-01: Microloop prevention by introducing a local convergence delay
- The concept of our draft is same as the section 6.1 of RFC5715,
 - ✓ A new algorithm .
 - ✓ Simpler than [OPT] referenced in RFC5715.

The example(1) - 1

The original topology:

- The scenario:
 - The link between B and A up.
 - The IGP adjacency is established.
- There is transient forwarding loop if
 - The FIB entry in device G is updated before B.

The example(1) - 2

- Calculate the distances of other nodes to node A without the link "B→A"
 - Calculate the RSPF tree on node B
 - The "A" will be considered as the root;
 - The metric of " $B \rightarrow A$ " is maximum.

The example (1) - 3

Calculate the distances of other nodes to node A with the link "B→A"

Calculate the RSPF tree on node B:

The "A" will be considered as the root:

• The metric of "B→A" is the normal metric 10.

The example(1) - 4

Calculating the metric sequence to adjust the link "B→A":

1. Calculate the metric of node i in this set to the root A in these two RSPF tree: Cost(i, min) and Cost(i, max), we can get the following

|--|

	Cost(i, max)	Cost(i, min)	Δ(i)
В	130	10	120
С	130	20	110
D	120	30	90
E	110	40	70
F	100	50	50
G	120	20	100
Н	130	30	100
I	110	30	80
J	100	40	60

The example (1) - 5

Calculating the metric sequence to adjust the link "B→A":

2. The metric sequence of adjustment.

The example(2)

The original topology:

- The scenario:
 - The link between B and A down.
 - Adjacency is broken, the change of metric can be consider from original metric to maximum.
- The algorithm is same, but the order of metric adjustment is reversed.

The difference with [OPT] in RFC5715

- The [OPT]
 - Tries to get a metric adjustment sequence(RMS) for each possible destination;
 - Optimizes this sequence to ORMS;
 - combines these ORMSs and prunes unnecessary metrics.
 - The challenge: Performance.
 - The number of RSPF: Base on possible node number;
 - ORMS algorithm.

- This draft:
 - Calculates a metric adjustment scope for each node.
 - a) this new metric will make the node i switch to the final best path.
 - b) this new metric doesn't make other unaffected nodes switch their paths.
 - Base on two times RSPF, calculates the best metric adjustment sequence in just one round.
 - Performance:
 - RSPF: 2 times.

Next Steps

- We already get some comments about some papers of IEEE,
 we need more time to read it in detail.
- How to handle the multiple neighbors on broadcast link?
- How to improve the performance of network wide?