
A-PAWS: Alternative Approach for PAWS

draft-nishida-tcpm-apaws-00

Yoshifumi Nishida

 Background

 RFC1323 (RFC1323bis) requires putting timestamps in all
segments

 Once TSopt has been successfully negotiated,

 TSopt MUST be sent in every non-<RST> segment

 for the duration of the connection

 Timestamp consumes 10-12 bytes in option space
 25-30% available option space cannot be used for other options!

 Why We Need TS in Every Segment?

 Timestamp
 TS in every segment is not necessary
 Number of samples per RTT does not affect the effectiveness of RTO

 PAWS
 TS in every segment is necessary
 Otherwise, TCP might accept old duplicated segments by mistake

 If we have PAWS-like mechanism without TS, we don’t need
TS in every segments!

 A-PAWS: An Alternative for PAWS

 Design Principle
 Do not rely on timestamp

 Provide the same protection as PAWS does

 No worse than PAWS
 Fallback to PAWS when if there is a risk

 What Does PAWS Do?

 Protection against packets that has the same seqno, but has
different payload

 How does this happen?
 Case 1: Packets belong to the same connection
 Seqno circulates every 2**32 bytes

 Case 2: Packets belong to previous connections which have the
same 5 tuples

 May happen due to rebooting or using SO_REUSEADDR

 Case 3: Spoofed Packets or broken implementation

 Protection Logic of PAWS

 Presume that TS is monotonically increased

 Compare TS in the received segment (SEG.TSVal) and latest
received TS (TS.Recent)

 SEG.TSval < TS.Recent ... reject

 SEG.TSval >= TS.Recent ... accept

 This might not be useful for malicious attack
 Using random TS can pass PAWS check easily	

 A-PAWS’s Logic (1)

 Protection against packets belong to the same connection
 Seqno circulates every 2**32 bytes

 Approach
 Count sending/receiving bytes at endpoints

 Receiver’s logic
 If receiving bytes < 2**32, accept

 If receiving bytes >= 2**32, do PAWS check

 Sender’s logic
 If sending bytes < 2**32, don’t put TS

 If sending bytes >= 2**32, put TS (fallback to PAWS)

 A-PAWS’s Logic (2)

 Protection against packets belong to previous connections
 May happen due to rebooting or using SO_REUSEADDR

 Approach
 Don’t use A-PAWS for a MSL upon starting up

 Don’t use A-PAWS if SO_REUSEADDR is set

 Signalling

 A-PAWS requires signalling before used
 If sender uses A-PAWS and receiver uses PAWS, packet might be

discarded

 Possible Signalling Method
 Using new TCP Option in SYN

 Using new TCP Option in Non-SYN

 Using Timestamp values in SYN
 Proposed in draft-scheffenegger-tcpm-timestamp-negotiation

 Conclusion

 What A-PAWS does
 Provide PAWS-like protection without timestamp
 Easy to implement because of simple logic

 Provide the same level of security as PAWS
 No worse than PAWS
 Fallback to PAWS when it’s necessary

 What A-PAWS does not
 Provide better protection than PAWS

 Make PAWS obsolete
 A-PAWS requires PAWS

 Questions?

 Please check draft-nishida-tcpm-apaws
 for more info!

 Feedbacks are welcome!

