
TSO, fair queuing, pacing:
three’s a charm

Eric Dumazet <edumazet@google.com>
Yuchung Cheng <ycheng@google.com>

A world of TCP bursts
● TCP is window-based and ack-clocked

○ Sudden cwnd increase
■ cwnd: stretch ACKs (e.g., LRO)
■ rwnd: receiver buffering

○ Idling between ACK and data
● TSO deferral bugs
● Switches local aggregation
● Modern structured traffic

Burst losses are bad signals to CC as network is often not
100% utilized

Oversize bursts are bad

● Bad throughput
○ Losses and ECN flags
○ Network is often not 100% utilized
○ False congestion alarms to TCP

● Vicious cycle
○ Bursts - losses - recovery - rwin surge - bursts ...

Many solutions exist
● Limit the bursts

○ moderate cwnd = inflight + 3 (linux)
○ send <=max_burst pkts per ACK (bsd)

● Tweak cwnd when idle
○ Reduce cwnd by Y% after X time

■ e.g., cwnd = min(cwnd, IW) after RTO

● Disable TSO/LRO

● Throttle large flows to improve fairness in qdisc

fq/pacing

● TCP cwnd controls the amount to send per RTT
○ Clocked by ACKs
○ No more TCP tweaks for burst

● qdisc layer handles sub-RTT scheduling
○ Pace at cwnd/RTT after idling
○ Flow fair queuing to improve mixing and fairness

● Break large burst into microburst
○ Dynamic TSO sizing base on the pacing rate
○ High performance host I/O

fq/pacing to reduce video burst

fq/pacing in Linux 3.11-rc7
- High performance: allows millions of concurrent flows per Qdisc

- Small memory footprint : 8K per Qdisc, and 104 bytes per flow
- Single high resolution timer to pace flows
- One RB tree to link throttled flows.
- fast flow match (not stochastic hash like SFQ/FQ_codel)

- Uses the new_flow/old_flow separation from FQ_codel
- Special FIFO queue for high prio packets (no need for PRIO + FQ)

Example usage:
tc qdisc add dev $ETH root fq

