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Don’t we have “appointed 
forwarders”? 
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R1 R2 R3 

R1, R2, and R3 can all forward.  DRB assigns work, based on VLANs 
But requires R1, R2, R3 all carefully coordinated, all see all packets 

endnodes 



The active-active stuff being 
discussed in different 
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The “active-active” stuff 

•  Multiple RBridges, {R1, R2, R3} attached 
to a bunch of endnodes 

•  But when a packet is forwarded from the 
bunch of endnodes, only one of {R1, R2, 
R3} sees that packet 

•  And {R1, R2, R3} cannot easily talk to each 
other (they are not on a common link)  
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Two pictures 
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(Presumed) Rules for forwarding 
upwards 

•  Same “flow” go to the same next hop 
•  Otherwise, basically random 
•  Multidestination might go to any of the next 

hops 
•  And nothing is forwarded (by hypervisor or 

bridge) between the up-links 
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Goals (“would be nice”) 

•  Probably we won’t find any solutions that meet all 
the goals 
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Goals (“would be nice”) 

•  All up-links active 
•  If S sends to distant node D, D à S traffic should 

enter S via link closest to D, regardless of which 
up-link was used for path S à D 

•  Have D à S traffic take same path as S à D 
traffic (note: directly conflicts with above goal)  

•  R4 (or D) shouldn’t keep changing its mind about 
which RB S is connected to 

•  Packets for a flow should stay in order 
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Goals (“would be nice”) 

•  No need to change entire campus at once 
(perhaps only need to change {R1, R2, R3}, 
maybe R4. 

•  Works with all existing silicon 
•  RPF check on multi-destination works 

(doesn’t falsely drop packets) 
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What’s wrong with naïve 
approach? 
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 When S sends via 
R1, “first RB” 
field=R1, etc. 
 
Problem:  R4 will 
return via same up-
link (possibly not 
optimal one), and 
R4 will keep 
switching its 
endnode table for S 
if traffic from S 
comes via R2, R3,… 



With pseudonode 
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 R1, R2, R3 agree 
(somehow) on a 
pseudonode 
nickname for the set 
of MACs reachable 
from {R1, R2, R3}, 
let’s say “79” 
 
Always encapsulate 
with 1st RB=79 



Pseudonode 

•  R1, R2, R3 claim they are attached to “79” 
•  Use “79” as ingress when receive from their 

uplink 
•  All endnodes attached to R1, R2, R3 look 

like they are reachable via 79 
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Problem: What if E1’s link to R1 
dies? 
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Problem: What if E1’s link to R1 
dies? 
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If R3 uses 
pseudonode “79” 
when sending to D, 
return traffic to E1 
might go via R1, 
and fail 



Problem: What if E1’s link to R1 
dies? 
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How could R3 
detect this, even if 
there was something 
sensible for it to do? 



Solutions? 

•  Ignore the problem: “hardly ever happens” 
•  Have R1 notice somehow and tunnel traffic for E1 to R2 or 

R3  (even though R1 is still connected to “79” for other 
endnodes) 

•  Don’t use pseudonode, and have distant RBs learn multiple 
addresses for each E, as in 
–  E1 reachable via R2 (timestamp), and R3 (timestamp) 
–  E2 reachable via R1 (timestamp), R2 (timestamp), and R3 

(timestamp) 

•  ??? Any other possibilities? 
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Picture for “learn multiple 
attachments for S” 
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R4 keeps, for S 
S located at 
     R1/ last seen T1 
     R2/ last seen T2 
     R3/last seen T3 
 
And R1, R2, R3 don’t use “79”, 
they use their own nicknames 



Another problem with pseudonode: 
RPF check on multicast 
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Multidestination frames, pseudonode 
nickname, and the RPF check 

pseudonode 

R1 R2 R3 

R8 

17 136 38 

79 

For each tree, “79” will only be 
attached to one of {R1, R2, R3} 
 
If R2 injects on that tree, 
R8 will drop because of 
RPF check                     

S1 S2 S3 
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Potential solutions (assuming R3 not 
attached to any tree, but R1 and R2 are) 

•  R3 refuses to use link(s) to “79” at all (disables its port) 
•  R3 continues to work, but only for unicast; if a packet must 

be multidestination from “79”, R3 tunnels to R1 or R2 
•  On multicast, R3 sends, but uses “R3” for ingress instead 

of “79” 
•  Use a bit in the TRILL header to mean “I’m in multiple 

places” (turn off MAC flip-flop panic, or keep multiple RB 
attachments) 

•  Let’s look at pros and cons of each approach 
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R3 disables the port completely 

•  Pro: simple 
•  Con: very sad 
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R3 tunnels multidestination to R1 
or R2 

•  Pro: 
– Simple 
– Doesn’t change anyone except {R1, R2, R3} 

•  Cons:  
– Maybe some silicon doesn’t support this? 
– Extra hops 
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R3 uses its own nickname for 
multidestination ingress 

•  Pros 
– Simple 
– Doesn’t change anyone except {R1, R2, R3} 

•  Cons 
–  (distant) R8 sometimes learns (S,79) (on 

unicast), sometimes (S,R3) (multidestination 
through R3) 
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No pseudonode; learn multiple 
attachments 

•  Change (all) edge RBs to cope with E being 
attached to multiple places (R1, R2, and R3) 

•  Keeps separate timestamp for each learned 
attachment 

•  When sending to S, choose any (say nearest, 
or load split based on flows) of R1, R2, R3 

November 2013 24 



Picture for “learn multiple 
attachments for S” 
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And R1, R2, R3 don’t use “79”, 
they use their own nicknames 



Learn Multiple attachments 

•  Pros 
– Less, or no, configuration required 
– Allows {R1, R2, R3} to use any multicast tree 
– No problem if E1’s uplink to R1 fails 

•  Cons 
– Requires edge RBs to keep track of multiple 

attachment points for endnodes; and separately 
time them out; disable flip-flop panic 
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What’s the “affinity” thing? 

•  It’s a new TLV in IS-IS that says “for these 
trees, put this nickname as a child of me” 
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What does it do and what doesn’t it 
do? 

pseudonode 

R1 R2 R3 

R8 

79 

S1 S2 S3 
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Make 79 my child 
in tree #3 

Make 79 my child 
in tree #2 



What does it do? 

•  If you have at least as many trees as up-
links… 

•  And you configure everything properly… 
•  And all RBs in the campus implement this 

new thing… 
•  You will be assured that each of the uplinks 

has at least one tree to send on 
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What does it not do? 

•  Still have the problems mentioned earlier in the 
presentation 
–   if fewer trees than uplinks 
–  if misconfiguration 
–  If one of the uplinks from some set of endnodes fails 

•  Requires as many trees as active uplinks.  Each tree 
requires significant state and computation 

And note: It requires all RBs in the campus to understand this 
new TLV and compute trees accordingly 
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Questions from me 

•  How many trees do people want? 
•  How many uplinks do people want? 
•  Do we care if an RB can’t use all the 

campus trees? 
•  Do we care about misconfiguration? 
•  Are we worried about the problem of some 

uplinks failing? 
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Conclusions 

•  Lots of different aspects, and nothing 
addresses all of them at the same time…we 
can do mix and match 

•  No perfect solution 
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