
Overview of TRILL Active-Active
Goals, Challenges, and Proposed

Solutions

Radia Perlman
radiaperlman@gmail.com

1 November 2013

Don’t we have “appointed
forwarders”?

November 2013 2

R1 R2 R3

R1, R2, and R3 can all forward. DRB assigns work, based on VLANs
But requires R1, R2, R3 all carefully coordinated, all see all packets

endnodes

The active-active stuff being
discussed in different

November 2013 3

The “active-active” stuff

•  Multiple RBridges, {R1, R2, R3} attached
to a bunch of endnodes

•  But when a packet is forwarded from the
bunch of endnodes, only one of {R1, R2,
R3} sees that packet

•  And {R1, R2, R3} cannot easily talk to each
other (they are not on a common link)

4 November 2013

Two pictures

November 2013 5

hypervisor

VM VM VM VM VM

R1 R2 R3

Rest of campus

R1 R2 R3

Rest of campus

bridge

R4

D

R4

D

S

S

(Presumed) Rules for forwarding
upwards

•  Same “flow” go to the same next hop
•  Otherwise, basically random
•  Multidestination might go to any of the next

hops
•  And nothing is forwarded (by hypervisor or

bridge) between the up-links

November 2013 6

Goals (“would be nice”)

•  Probably we won’t find any solutions that meet all
the goals

November 2013 7

Goals (“would be nice”)

•  All up-links active
•  If S sends to distant node D, D à S traffic should

enter S via link closest to D, regardless of which
up-link was used for path S à D

•  Have D à S traffic take same path as S à D
traffic (note: directly conflicts with above goal)

•  R4 (or D) shouldn’t keep changing its mind about
which RB S is connected to

•  Packets for a flow should stay in order
November 2013 8

Goals (“would be nice”)

•  No need to change entire campus at once
(perhaps only need to change {R1, R2, R3},
maybe R4.

•  Works with all existing silicon
•  RPF check on multi-destination works

(doesn’t falsely drop packets)

November 2013 9

What’s wrong with naïve
approach?

November 2013 10

hypervisor

VM VM VM VM VM

R1 R2 R3

Rest of campus

R4

D

S

 When S sends via
R1, “first RB”
field=R1, etc.

Problem: R4 will
return via same up-
link (possibly not
optimal one), and
R4 will keep
switching its
endnode table for S
if traffic from S
comes via R2, R3,…

With pseudonode

November 2013 11

hypervisor

VM VM VM VM VM

R1 R2 R3

Rest of campus

R4

D

S

 R1, R2, R3 agree
(somehow) on a
pseudonode
nickname for the set
of MACs reachable
from {R1, R2, R3},
let’s say “79”

Always encapsulate
with 1st RB=79

Pseudonode

•  R1, R2, R3 claim they are attached to “79”
•  Use “79” as ingress when receive from their

uplink
•  All endnodes attached to R1, R2, R3 look

like they are reachable via 79

November 2013 12

Problem: What if E1’s link to R1
dies?

November 2013 13

R1 R2 R3

Rest of campus

R4

D

E1 E2 E3 E4 E5 E6

Problem: What if E1’s link to R1
dies?

November 2013 14

R1 R2 R3

Rest of campus

R4

D

E1 E2 E3 E4 E5 E6

If R3 uses
pseudonode “79”
when sending to D,
return traffic to E1
might go via R1,
and fail

Problem: What if E1’s link to R1
dies?

November 2013 15

R1 R2 R3

Rest of campus

R4

D

E1 E2 E3 E4 E5 E6

How could R3
detect this, even if
there was something
sensible for it to do?

Solutions?

•  Ignore the problem: “hardly ever happens”
•  Have R1 notice somehow and tunnel traffic for E1 to R2 or

R3 (even though R1 is still connected to “79” for other
endnodes)

•  Don’t use pseudonode, and have distant RBs learn multiple
addresses for each E, as in
–  E1 reachable via R2 (timestamp), and R3 (timestamp)
–  E2 reachable via R1 (timestamp), R2 (timestamp), and R3

(timestamp)

•  ??? Any other possibilities?

November 2013 16

Picture for “learn multiple
attachments for S”

November 2013 17

hypervisor

VM VM VM VM VM

R1 R2 R3

Rest of campus

R4

D

S

R4 keeps, for S
S located at
 R1/ last seen T1
 R2/ last seen T2
 R3/last seen T3

And R1, R2, R3 don’t use “79”,
they use their own nicknames

Another problem with pseudonode:
RPF check on multicast

November 2013 18

Multidestination frames, pseudonode
nickname, and the RPF check

pseudonode

R1 R2 R3

R8

17 136 38

79

For each tree, “79” will only be
attached to one of {R1, R2, R3}

If R2 injects on that tree,
R8 will drop because of
RPF check

S1 S2 S3

19 November 2013

Potential solutions (assuming R3 not
attached to any tree, but R1 and R2 are)

•  R3 refuses to use link(s) to “79” at all (disables its port)
•  R3 continues to work, but only for unicast; if a packet must

be multidestination from “79”, R3 tunnels to R1 or R2
•  On multicast, R3 sends, but uses “R3” for ingress instead

of “79”
•  Use a bit in the TRILL header to mean “I’m in multiple

places” (turn off MAC flip-flop panic, or keep multiple RB
attachments)

•  Let’s look at pros and cons of each approach

November 2013 20

R3 disables the port completely

•  Pro: simple
•  Con: very sad

November 2013 21

R3 tunnels multidestination to R1
or R2

•  Pro:
– Simple
– Doesn’t change anyone except {R1, R2, R3}

•  Cons:
– Maybe some silicon doesn’t support this?
– Extra hops

November 2013 22

R3 uses its own nickname for
multidestination ingress

•  Pros
– Simple
– Doesn’t change anyone except {R1, R2, R3}

•  Cons
–  (distant) R8 sometimes learns (S,79) (on

unicast), sometimes (S,R3) (multidestination
through R3)

November 2013 23

No pseudonode; learn multiple
attachments

•  Change (all) edge RBs to cope with E being
attached to multiple places (R1, R2, and R3)

•  Keeps separate timestamp for each learned
attachment

•  When sending to S, choose any (say nearest,
or load split based on flows) of R1, R2, R3

November 2013 24

Picture for “learn multiple
attachments for S”

November 2013 25

hypervisor

VM VM VM VM VM

R1 R2 R3

Rest of campus

R4

D

S

R4 keeps, for S
S located at
 R1/ last seen T1
 R2/ last seen T2
 R3/last seen T3

And R1, R2, R3 don’t use “79”,
they use their own nicknames

Learn Multiple attachments

•  Pros
– Less, or no, configuration required
– Allows {R1, R2, R3} to use any multicast tree
– No problem if E1’s uplink to R1 fails

•  Cons
– Requires edge RBs to keep track of multiple

attachment points for endnodes; and separately
time them out; disable flip-flop panic

November 2013 26

What’s the “affinity” thing?

•  It’s a new TLV in IS-IS that says “for these
trees, put this nickname as a child of me”

November 2013 27

What does it do and what doesn’t it
do?

pseudonode

R1 R2 R3

R8

79

S1 S2 S3

28 November 2013

Make 79 my child
in tree #3

Make 79 my child
in tree #2

What does it do?

•  If you have at least as many trees as up-
links…

•  And you configure everything properly…
•  And all RBs in the campus implement this

new thing…
•  You will be assured that each of the uplinks

has at least one tree to send on

November 2013 29

What does it not do?

•  Still have the problems mentioned earlier in the
presentation
–  if fewer trees than uplinks
–  if misconfiguration
–  If one of the uplinks from some set of endnodes fails

•  Requires as many trees as active uplinks. Each tree
requires significant state and computation

And note: It requires all RBs in the campus to understand this
new TLV and compute trees accordingly

November 2013 30

Questions from me

•  How many trees do people want?
•  How many uplinks do people want?
•  Do we care if an RB can’t use all the

campus trees?
•  Do we care about misconfiguration?
•  Are we worried about the problem of some

uplinks failing?

November 2013 31

Conclusions

•  Lots of different aspects, and nothing
addresses all of them at the same time…we
can do mix and match

•  No perfect solution

November 2013 32

