
Some thoughts from a
disarrayed mind on the
evolution of transport

abstractions
Jana Iyengar

● Resource Pooling, Mobility (MPTCP)
● Better congestion control
● Lower network latency
● Channel encryption (TCP-Crypt)

What’s in our purview?

Are these new services … or bug fixes?
● things we’ve always wanted to do
● Internet plumbing

These are important … and we’re really good at
them!

What’s in our purview?

From an app developer’s point of view
however, we’re working on improving
implementations, not building new abstractions.

Do apps need new abstractions?

● Apps (things that humans interact with)
today
○ traffick in units of streams, messages
○ build to semantics available at design-time
○ care about reliability, latency, throughput
○ don’t care about the shape of the bits on the wire

● Transport services should map to app needs
○ .. but our transport services don’t. There is a gap.

What’s in the gap?

● Common design patterns
○ message dependencies, framing, interleaving …
○ mobility?

● Performance optimizations
○ zero-RTT transactions
○ “slow-start avoidance”?

● New transports lie in this gap.

App developers fill these gaps with new
transports using conventional transports as low-
level building blocks …
● for deployability on existing hosts
● for deployability through middleboxes
● eg: RTMP, RTMFP, QUIC, Minion

Unfortunately, our transports don’t make great
building blocks.
● SCTP is not the answer if all an app wants is

reliable message semantics.
● Improvements to congestion control seem

hidden under TCP’s bytestream API.

Thoughts on the evolution of
transport abstractions

● We ought to fill this gap to the application
● We should consider encapsulating our

mechanisms as building blocks
○ LEDBAT is an example

● We should consider enabling compositions
of mechanisms at design time

