DTLS-based Multicast Security for Low-Power and Lossy Networks (LLNs)

draft-keoh-dice-multicast-security

Sandeep S. Kumar, Sye Loong Keoh, Oscar Garcia-Morchon, Esko Dijk, Akbar Rahman

Email: sandeep.kumar AT philips.com
Group Communication Use Case

Lighting control
Group Communication Use Case

Lighting control
 • Visually synchronous change
Group Communication Use Case

Lighting control

- Visually synchronous change
- Multicast groups -> CoAP group communication
Group Communication Use Case

Lighting control in Office Building

Room 1

Room 2

Sensor

Corridor
Group Communication Use Case

Lighting control in Office Building

Room 1

Border Router-1

Room 2

Border Router-2

Network Backbone (IPv6 Multicast enabled)

Sensor

Power line

Corridor
Group Communication Use Case

Lighting control in Office Building

LoWPAN-1

Room 1

Border Router-1

LoWPAN-2

Room 2

Border Router-2

Network Backbone (IPv6 Multicast enabled)

Power line

Sensor

Corridor
Group Communication Use Case

Lighting control in Office Building

LoWPAN-1

Room 1

Border Router-1

LoWPAN-2

Room 2

Border Router-2

Network Backbone
(IPv6 Multicast enabled)

Power line

Sensor

Corridor
Group Communication Use Case

Lighting control in Office Building

LoWPAN-1

Room 1

Border Router-1

LoWPAN-2

Room 2

Border Router-2

Network Backbone (IPv6 Multicast enabled)

Sensor

Power line

Corridor
Requirement

Security for CoAP group communication messages across multiple LowPANs/PHY-networks

- Same security level as within a single LowPAN
- Groups of <100 nodes
- Group level Confidentiality, Integrity, Replay protection
- Reuse existing protocols on constrained devices
 - DTLS chosen for CoAP unicast communication
Proposed solution

• Use DTLS record layer to also protect CoAP group communication messages (in addition to CoAP unicast)
• Out-of-band setup of Groups Security Association (GSA) for group members
• Support multiple senders in the group
 – Adapt DTLS record layer to avoid reuse of nonce for AEAD cipher suites
DTLS record layer adaptation

• Each sender gets a **unique SenderID (1-byte)** from the group controller

• In the DTLS Record Layer, split the 6-byte sequence number field into:
 - **1 byte** Sender ID and **5 bytes** “truncated” sequence number.
DTLS record layer processing

Senders

- “write state” is instantiated with “server write” parameters.
- Each sender manages its own epoch and “truncated” sequence number
 - no synchronization is needed with other senders in the group. Initialized to 0.
- The sender include its Sender ID in the DTLS Record Layer header and increments the “truncated” sequence number when sending a group message.
- The epoch will be increased, and the “trunc.” sequence number will be reset once the group session key is renewed or updated (out-of-scope: to be defined as part of key management)
DTLS record layer processing

Listeners (Receivers)

- Multiple “read states” are instantiated with “server write” parameters for each sender linked by *SenderID*.
 - Keying material same but the epoch and the "truncated" sequence number of the last received packets needs to be kept different for different senders.
- Listeners use the *multicast destination IP and port address* of the packet to lookup the “server write” key.
- Message is decrypted and the MAC of the message is checked.
- Using the *Sender ID* field, receivers retrieve the last used *epoch* and *sequence number* to detect replayed messages.
 - If success: last seen seq number from the SenderID in the “read state” is updated.
Changes since IETF 88

• More discussion on the group level security
 – Security considerations provide additional guidance on the risks of single group key

• Limit number of group members < 100
 – SenderID field reduced from 2-bytes to 1-byte

• Ensure the solution is crypto-agile
 – Not limited to any particular cryptosuite like AERO
 – Supports DTLS cryptosuites used at record layer

• Other comments
 – Use port address for binding
Summary

- Group communication requires application security in many scenarios

- Preferably re-use existing security protocols on constrained devices in LLNs.

- Proposal to reuse DTLS Record layer to support secure group communication.