
Application Layer Protocol
Negotiation

TLS extension for application layer
protocol negotiation within the TLS

handshake

Background and Design Goals

HTTPBis WG requested TLS support for
negotiating application layer protocols such as
HTTP 1.1 and HTTP 2.0.

Design goals:

• Negotiate application layer protocol for the
connection.

• Minimize connection latency.

• Align with existing TLS extensions.

Full TLS Handshake with ALPN

Abbreviated TLS Handshake with ALPN

ALPN Extension Structure
• The "extension_data" field of the ALPN extension SHALL

contain a "ProtocolNameList" value.

opaque ProtocolName<1..2^8-1>;
struct {

ProtocolName protocol_name_list<2..2^16-1>
} ProtocolNameList;

• When sent with the ClientHello message,
"ProtocolNameList" contains the list of protocols advertised
by the client, in descending order of preference.

• When sent with the ServerHello message,
"ProtocolNameList" MUST contain exactly one
"ProtocolName“ representing the selected protocol.

Protocol IDs and Protocol Selection

• Protocols IDs are IANA registered, opaque,
non-empty byte strings.

• Initial registrations have been requested for
HTTP/1.1, SPDY/1, SPDY/2, SPDY/3.

• If the server supports no protocols that the
client advertises, the server SHALL respond
with a fatal "no_application_protocol" alert.

ALPN Design Considerations

• Protocol selection on the server allows
certificate to be chosen based on the
negotiated protocol.

• The negotiated protocol is known after the
first network roundtrip.

• The "extension_data" field of the ALPN
extension allows re-use of the existing parsers.

• TLS renegotiation can be used to negotiate an
application protocol with confidentiality.

Changes Since IETF88

• Minor re-wording in sections 3.2 and 4 to clarify
that the application protocol can be renegotiated
in the course of TLS session renegotiation.

• Added text in section 5 “Security Considerations”
to highlight the risks of sending sensitive protocol
IDs in the clear.

• IESG has evaluated and approved the ALPN draft.

• Minor updates resulting from IESG review will be
incorporated once the I-D submission tool is
reopened.

Available Implementations & Tools

• New since IETF88: NGINIX added ALPN
support.

• ALPN is implemented in several HTTP/2
prototypes, including Katana, Mozilla,
Chromium, iij-http2, GFE.

• ALPN patch for OpenSSL contributed by
Google.

• ALPN support for Wireshark network analyzer
contributed by Akamai.

ALPN Deployment

• *.google.com servers have ALPN enabled.
• Google Chrome and IE11 support application protocol

negotiation via ALPN.
• F5/BIG-IP FW versions older than 10.2.4 cannot handle

ClientHello messages longer than 255 and shorter than
512 bytes. This is a general issue e.g. when adding
cipher suites, extensions, or using SNI with a long
server name. The use of ALPN extension can also
expose this bug.

• A workaround for the F5 issue exists: ClientHello
padding TLS extension (draft-agl-tls-padding). Early
IANA code point allocation for this extension has been
requested.

Links and Contact Information

• ALPN Draft: http://datatracker.ietf.org/doc/draft-
ietf-tls-applayerprotoneg

• ClientHello padding TLS extension to work around
the F5 issue:
https://datatracker.ietf.org/doc/draft-agl-tls-
padding/

• Stephan Friedl sfriedl@cisco.com
• Andrei Popov andreipo@microsoft.com
• Adam Langley agl@google.com
• Emile Stephan emile.stephan@orange.com

http://datatracker.ietf.org/doc/draft-ietf-tls-applayerprotoneg
https://datatracker.ietf.org/doc/draft-agl-tls-padding/
mailto:sfriedl@cisco.com
mailto:andreipo@microsoft.com
mailto:agl@google.com
mailto:emile.stephan@orange.com

