1/21

Safe increase of the TCP's Initial Window Using Initial Spreading

draft-irtf-iccrg-sallantin-initial-spreading-00.txt

R. Sallantin¹ C. Baudoin² E. Chaput¹ F. Arnal² E. Dubois³ A-L. Beylot¹

¹IRIT Université de Toulouse ²Thales Alenia Space

³Centre National d'Études Spatiales

February 28, 2014

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

< 回 > < 回 > < 回 >

→ Ξ → < Ξ →</p>

æ

2/21

Outline

Initial Spreading

- Concept
- Trade off on T_{spreading}
- Results
- Implementation

Context		
		3/21
Context		

 Good performance of last TCP algorithms for long-lived connections

Unfortunately

- Poor efficiency of regular TCP mechanisms for short-lived connections
- Problem even bigger for satcoms because of the long RTTs

イロト イポト イヨト イヨト

æ

Context		
		3/21
Context		

 Good performance of last TCP algorithms for long-lived connections

Unfortunately

- Poor efficiency of regular TCP mechanisms for short-lived connections
- Problem even bigger for satcoms because of the long RTTs

90% of web requests are shorter than 10 segments

ヘロト ヘワト ヘビト ヘビト

4/21

High level contribution

Initial Spreading concept:

Spread a large amount of data accross the first RTT Speed the transmission of the first segments AND Minimize the impact on the bottleneck link. Goal: reduce the average latency

・ 回 ト ・ ヨ ト ・ ヨ ト

Initial Spreading concept:

Spread a large amount of data accross the first RTT Speed the transmission of the first segments AND Minimize the impact on the bottleneck link. Goal: reduce the average latency

Take the best of 2 TCP mechanisms:

- Increase in the TCP's Initial Window
- TCP Pacing

(4回) (日) (日)

To satisfy 90 % of web requests in 1 RTT RFC 6928 recommends to set the IW up to 10 segments.

J. Chu, N. Dukkipati, Y. Cheng, M. Mathis, Increasing TCP's Initial Window RFC 6928

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

イロト イポト イヨト イヨト

æ

To satisfy 90 % of web requests in 1 RTT RFC 6928 recommends to set the IW up to 10 segments.

J. Chu,N.Dukkipati,Y.Cheng,M.Mathis, Increasing TCP's Initial Window RFC 6928

In uncongested network: The fastest solution

イロト イポト イヨト イヨト

To satisfy 90 % of web requests in 1 RTT RFC 6928 recommends to set the IW up to 10 segments.

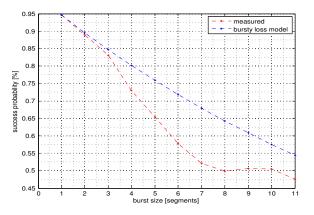
J. Chu,N.Dukkipati,Y.Cheng,M.Mathis, Increasing TCP's Initial Window RFC 6928

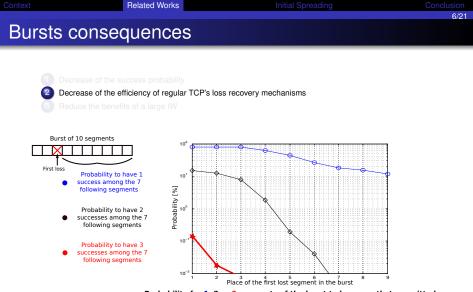
In uncongested network: The fastest solution

In congested network: What is the real impact of this initial burst?

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

イロト イポト イヨト イヨト


Bursts consequences


Decrease of the success probability

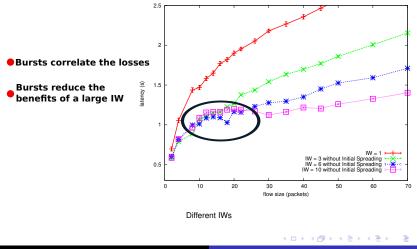
Decrease of the efficiency of regular TCP's loss recovery mechanisms

Reduce the benefits of a large IW

Burst consequences according to the model and real experimentations

Probability for 1, 2 or 3 segments of the burst to be correctly transmitted when one of the previous segment of the burst has been lost

イロト イポト イヨト イヨト


Bursts consequences

ecrease of the success probability

Decrease of the efficiency of regular TCP's loss recovery mechanisms

Reduce the benefits of a large IW

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

	Related Works	
		7/21
Pacing		

Pacing aims to prevent the generation of bursts

Concept:

Spread window transmission over the RTT

・ 回 ト ・ ヨ ト ・ ヨ ト

Pacing aims to prevent the generation of bursts

Concept:

Spread window transmission over the RTT

Consequences:

Increases the bit rate by reducing the isolated congestion

BUT

 Delay the losses, and then, delays the congestion until a potential network collapse

ヘロト 人間 ト ヘヨト ヘヨト

æ

Pacing aims to prevent the generation of bursts

Concept:

Spread window transmission over the RTT

Conclusion:

TCP efficiency needs the loss detection.

=>Pacing downgrades the average TCP performance.

Source: A. Aggarwal, S. Savage, and T. Anderson, Understanding the performance of TCP Pacing, INFOCOM 2000

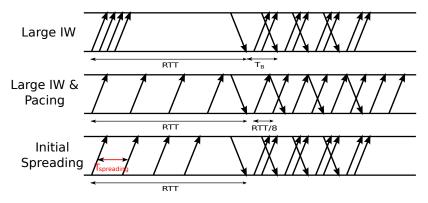
ヘロト ヘアト ヘビト ヘビト

э.

		Initial Spreading	
Concept	Trade off on Tenroading	Results	Implementation 8/21
What we	e propose		

Initial Spreading:

Spread the IW across the first RTT


Two possibilities:

- Variable Spreading: T_{spreading} = RTT/IW
 Bounded Spreading: T_{spreading} <= T_{max}

Let the TCP algorithm continue conventionally after

イロト イポト イヨト イヨト

		Initial Spreading	
Concept	Trade off on Tenroading	Results	Implementation 9/21
3 mec	hanisms		

Time diagram for a transmission of 12 segments

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

イロト イポト イヨト イヨト

ъ

For short-lived connections:

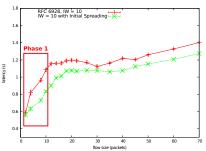
Send a large IW without being affected by bursts

- losses are independent in the first RTT
- loss probability is lower
- increase the probability of using recovery mechanisms Reduce the average latency

イロト イポト イヨト イヨト

		Initial Spreading		
Concept	Trade off on Terroading	Results	Implementation	10/21
Expec	ted behavior			

For long-lived connections:

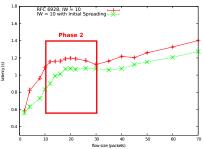

Prevents network overload and synchronization

- As soon as the second RTT, bursts appear
- Losses can continue to indicate the congestion

・ 同 ト ・ ヨ ト ・ ヨ ト

		Initial Spreading		
Concept	Trade off on Teoroading	Results	Implementation	11/21
Initial	Spreading behavior			

- Phase 1: IS reduces the burst impact
 - Phase 2: Segments sent (in mini burst of 2) in the 2nd RTT may trigger fast retransmit and recovery
- Phase 3: Congestion avoidanc manages the bit rate

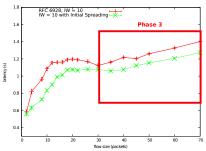

A D b 4 A b

→ E → < E →</p>

		Initial Spreading	Conclu	
Concept	Trade off on Terrading	Results	Implementation	11/21
Initial	Spreading behavior			

- Phase 1: IS reduces the burst impact
- Phase 2: Segments sent (in mini burst of 2) in the 2nd RTT may trigger fast retransmit and recovery
- Phase 3:

Congestion avoidance manages the bit rate


< < >> < </>

→ E → < E →</p>

		Initial Spreading	Conclu	
Concept	Trade off on Tecroading	Results	Implementation	11/21
Initial	Spreading behavior			

- Phase 1: IS reduces the burst impact
- Phase 2: Segments sent (in mini burst of 2) in the 2nd RTT may trigger fast retransmit and recovery
- Phase 3:

Congestion avoidance manages the bit rate

< < >> < </>

→ E → < E →</p>

э

		Initial Spreading		
Concept	Trade off on Terroading	Results	Implementation	12/21
Consic	derations			

To be efficient, Initial Spreading should take the best of several constraints:

- *T_{spreading}* MUST be large enough for the losses to be un-correlated
- *T_{spreading}* SHOULD be the shortest possible to not add an un-necessary delay (notably in uncongested network)
- Implementation MUST be light and respects Kernel constraints

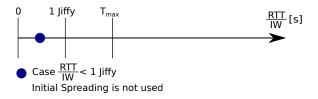
ヘロト 人間 ト ヘヨト ヘヨト

Assumption on the losses correlation:

- The minimal spreading depends on the bottleneck throughput
 - Segments spread with *T_{spreading}* < <u>BottleneckThroughput</u> MTU will face the same bottleneck buffer state.

Simulations and Experimentation confirm our hypothesis

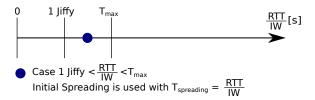
・ 同 ト ・ ヨ ト ・ ヨ ト


		Initial Spreading		
Concept	Trade off on Tenroading	Results	Implementation	14/21
Variable	or Bounded Spre	ading?		

- Variable Spreading is related to the RTT measurement
 => add some incertainty
- A Bounded Spreading insures a good losses independence for the IW segments
- A Bounded Spreading eases the implementation

We recommend the use of a Bounded Spreading

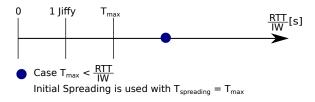
・ 同 ト ・ ヨ ト ・ ヨ ト


		Initial Spreading	Conclusio	
Concept	Trade off on Tenroading	Results	Implementation	15/21
Proposal				

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

イロト 不得 とくほ とくほとう

		Initial Spreading	
Concept	Trade off on Tenroading	Results	Implementation 15/21
Proposal			



Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

イロト 不得 とくほ とくほ とう

₹ 990

		Initial Spreading	
Concept	Trade off on Tecroading	Results	Implementation 15/21
Proposal			

イロン 不同 とくほう イヨン

3

		Initial Spreading	
Concept	Trade off on Tenroading	Results	Implementation 15/21
Proposal			

$$\text{if } \left(\frac{RTT}{IW} < 1 \text{ Jiffy} \right)$$

Do not use Initial Spreading

else

$$T_{spreading} = min\left(\frac{RTT}{IW}, T_{max}\right)$$

Where T_{max} is a parameter to set.

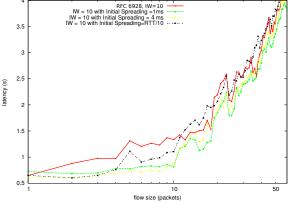
・ 回 ト ・ ヨ ト ・ ヨ ト

		Initial Spreading	
Concept	Trade off on Tecroading	Results	Implementation 16/21
Proposal			

We recommend to use $T_{max} = 4$ ms:

- IS works perfectly when bottleneck throughput > 4Mb/s in congested and uncongested environments
- For lower values, similar performance than RFC 6928
- Takes into account that recent kernels use a Jiffy interval of 4 ms

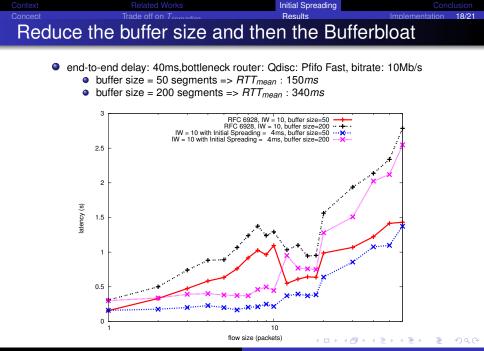
・ 回 ト ・ ヨ ト ・ ヨ ト



different spreadings for a delay of 40ms

イロト イポト イヨト イヨト

э



different spreadings for a delay of 250ms

イロト イポト イヨト イヨ

э

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot

Safe increase of the TCP's Initial Window Using Initial Spreading

		Initial Spreading		
Concept	Trade off on Tenroading	Results	Implementation	19/21
Impler	nentation			

• Patch available on request (linux-3.10.5)

- 335 lines
- Several supported options:
 - Variable Spreading
 - Bounded Spreading

 Implementation Issue: TSO/GSO has to be deactivated

< 🗇 🕨

· < 프 > < 프 >

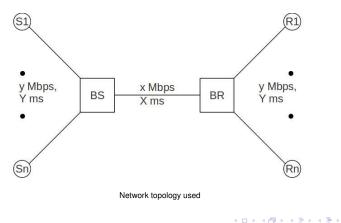
Conclusion

Initial Spreading allows to safely enlarge the IW from 3 to 10

• Initial Spreading offers a simple mechanism:

- To speed up short lived connections
- To reduce buffer size and then Buffer bloat
- To provide great performance enhancement for LFN

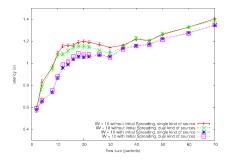
イロト イポト イヨト イヨト


		Conclusion
		21/21
Questions		

Questions ?

Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading

		Conclusion
		22/21
Testbed		

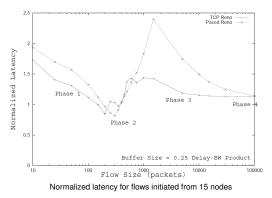

- NS2 simulations & real experimentations
- Several hundreds of iterations
- Confidence interval of 95% for each point

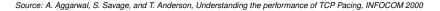
ъ

		Conclusion
		23/21
Fairness	and friendliness	

Unlike Pacing, IS performance are not mitigated by other flows

different sources sharing a bottleneck


Sallantin, Baudoin, Chaput, Arnal, Dubois, Beylot Safe increase of the TCP's Initial Window Using Initial Spreading


イロト イヨト イヨト イ

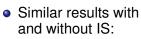
э

		Conclusion
		24/21
Pacing: Flav	vs	

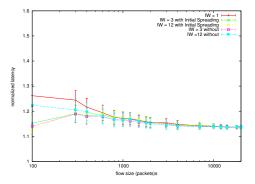
- delays the congestion until a potential network collapse
- Flows synchronization

< 🗇 🕨

크 > < 크


Initial Spreading

э


э.

25/21

Long-lived connections

- No flows synchronization
- No network collapse

