Model Based Metrics

IPPM Working Group IETF 89, London, Mar 3

Matt Mathis <mattmathis@google.com>
Al Morton <acmorton@att.com>

Outline

- Why Model Based Metrics matter (2 slides)
- Document status update & major changes
- Future work & open issues

Why Model Based Metrics matter

- IP metrics to assure TCP performance
- Original intent was for SLAs
 - ISPs are selling IP service
 - User wants to buy end-to-end application performance
 - Most of the system is out-of-scope for the ISP: rest of path, end hosts
 - Want to know if the ISP's portion is
- Use models to derive IP requirements from application targets
 - Can test IP properties in isolation
 - Any sub-path that fails any test vetoes the end-to-end performance
 - Out of scope components (e.g. host software) don't matter
 - If the IP layer passes all tests
 - and the transport and rest of end system are state of the art
 - then applications can be expected to meet the performance targets

Why Model Based Metrics matter

- The approach
 - Open loop Congestion control systems
 - Eliminate out-of-scope influences on the traffic
 - Test with traffic that resembles long RTT TCP
 - But decoupled from the details of the actual path
 - Measure the delivery statistics
 - Pass if better than required by models
 - No long term state in the system
- Key new properties
 - Vantage independence
 - Target RTT effects traffic and success criteria via models
 - Test RTT affects neither traffic nor success criteria
 - IP level tests are generally a ctionable by ISPs
 - Tests can be independently verified
 - Isolate effects of "out of scope" components
 - Mostly inside the model

Document Updates (Draft -02)

- It is now logically complete
 - No substantial missing material
 - The structure & flow are good
 - Some of the tests (section 8) need more detail
- Much of attention to terminology and consistent usage
- It defines a framework for defining "Target Diagnostic Suites"
 - The examples in the document could be fleshed out to be full metrics
- Added a (draft) new alternate statistical criteria section
 - Need to better understand the statistics
 - Further evaluation needed

Future work and open issues

- Tighten up some of the testing details
 - Tie to existing metrics and tools where possible
- More testing
- Feedback!

Backup Slides

Overview

The "application" determines the target rate End-to-end path determines target RTT and target MTU Host 1 Host 2 Sub-path under test

The rest of path is modeled as though it is effectively ideal

Each sub-path must pass all IP diagnostic tests of a Target Diagnostic Suite (TDS).

Overall Methodology

- Choose end-to-end Target Application (TCP) Parameters
 - Target_data_rate, target_RTT, and target_MTU
- Compute common model parameters
 - target_pipe_size required average window size (packets)
 - target_run_length required spacing between losses/ECN marks, etc.
- Generate a Targeted Diagnostic Suite (TDS)
 - Pass/Fail/Inconclusive tests of all important IP properties
 - Average spacing between losses (run length)
 - Sufficient buffering at the dominant bottleneck
 - Sufficient tolerance for IF rate bursts
 - Appropriate treatment of standing queues (AQM, etc)

Example: HD Video at moderate range (50 mS)

- Target: 5 Mb/s (payload) rate; 50 mS RTT; 1500 Byte MTU
- Model:
 - Target_pipe_size = 22 packets
 - Target_run_length = 1452 packets
- Computed TDS:
 - Run length longer than 1452 packets (no more than 0.069% loss)
 - Tolerates 44 packet slowstart bursts (twice the actual bottleneck rate)
 - (Peak queue occupancy is expected to be 22 packets)
 - Tolerates 22 packet bursts at server interface rate
 - (Peak bottleneck queue also expected to be 22 packets)
 - Standing queue test:
 - First loss/ECN is more than 1452 packets after the onset of queueing
 - First loss/ECN is no later than 3*1452(?) packets after queueing onset
 - Precise success criteria still under evaluation

An easier (combined) test procedure

- Fold most of the TDS into a single combined test
- Send 22 packet server rate bursts every 50 mS
 - Must average <1 loss/ECN every 66 bursts (1452 packets)
 - This has the same average data rate
 - ...same stress on the primary bottleneck (although more frequent)
 - ...same or higher stress on the rest of the path
- Downside: symptoms become ambiguous
- This test may actually be too conservative
 - A path that can withstand this test is likely to meet a higher target
 - This was the motivation for "derating"

Quasi-passive under streaming content delivery

- Diagnosis as a side effect of delivering real content
 - e.g. Using RFC 4898 TCP ESTATS MIB
- Requires non-throughput maximizing traffic
 - To avoid self inflicted congestion
 - E.g. any streaming media < target_rate
- Requires serving RTT < target_RTT
- Compute test_window = target_data_rate*serving_RTT
- Clamp serving cwnd to test window
 - Average rate over any full RTT will be smaller than target_rate
 - All bursts will be smaller than test_window (also target_pipe_size)
 - Compute run length from actual delivery statistics