Global Table Multicast
with BGP-MVPN

draft-zzhang-l3vpn-mvpn-global-table-mcast
London, 89th IETF
Summary

• Original draft targeted for Mboned and presented in 86th IETF (in L3VPN)
• Re-homed for L3VPN; re-structured -01 version presented in 88th IETF
• Requesting adoption in L3VPN WG
 • Presenting in Mboned/PIM WG for comments
 • Slides borrowed from Eric Rosen’s 88th presentation
Background/Motivation

- Service providers currently using and/or actively deploying BGP control plane (per MVPN RFCs/I-Ds) to:
 - carry customer multicast control information, and
 - multiplex customer multicast flows onto “P-tunnels” that travel through the SP “backbone”
- Procedures designed for use in VPN context
- SPs also have non-VPN multicast flows that have to be signaled and tunneled over the backbone
- Wouldn’t it be nice to use the same protocol and procedures for non-VPN multicast?
Why Would It Be Nice?

• By handling non-VPN multicast “just like” VPN multicast:
 • Same functionality,
 • Same tools,
 • Same training,
 • Same troubleshooting methodology,
 • Ability to aggregate VPN and non-VPN flows into the same tunnel
 • New features will apply to both, without having to do them twice
 • Etc.

• Purpose of draft-zzhang:
 • show how to apply MVPN procedures to non-VPN multicast
 • systematic attention to the few places where adaptation of the procedures is necessary or desirable
Global Table instead of VRF

- Basic approach: “use the MVPN protocols unchanged, just apply them to the Global Table instead of to a VRF”
 - “global table” is a routing table that is not specific to any VPN
 - GTM sometimes called “Internet multicast”, but:
 - the global tables don’t necessarily have Internet routes,
 - the “global” multicast flows aren’t necessarily going to or from the “Internet”
 - global just means “not VPN”

- No new SAFIs, NLRI formats, BGP path attributes

- No new semantics for existing messages
 - MVPN protocols use Route Distinguishers (RDs) to identify VRFs, but there is no use of RD 0
 - So let RD 0 identify the global table
 - Then just do everything the same 😊
Just a Few Details to Work Out

• Implementors need a little more detail than “do MVPN, but in the context of global table rather than VRF”

• MVPN procedures rely on Route Targets, but global tables don’t usually have route targets. Some adaptation is needed.

• MVPN procedures require egress PE to determine the ingress PE and the “upstream multicast hop” (UMH) for a given multicast flow. This is done by looking at MVPN-specific Extended Communities attached to VPN-IP routes. Some adaptation is needed.

• Is there anything needed for MVPN that isn’t also needed for GTM? Maybe a few things can be left out …

• Vice versa?

• As usual, there are a few special scenarios that some SPs would like to optimize for …
A Note on Terminology

• “PE” is well-established term in VPN context for routers that delimit the “SP backbone” and that attach directly to customer/subscriber routers (CEs)

• In GTM scenarios, the routers that delimit the backbone don’t attach to subscribers, aren’t necessarily “provider edge”

• So we use a new term “Protocol Boundary Router” (PBR) to denote those routers that play the same role in GTM procedures that PEs play in MVPN procedures
 • Any given multicast flow has its ingress PBR and its egress PBRs
 • MVPN-based BGP control plane used among the PBRs
 • The PBR interfaces that face away from the core (analogous to VRF or PE-CE interfaces) most likely use PIM to transfer multicast routing info. But we don’t rule out the use of BGP, IGMP, whatever.
 • As in MVPN, the tunnels through the core may be of a variety of technologies
AFI/SAFI’s needed for GTM/MVPN

- Always two AFI/SAFIs needed:
 - **UMH-eligible routes (RPF routes):** routes to the multicast sources, used for finding upstream neighbor and ingress PE/PBR:
 - MVPN: SAFI 128 (labeled VPN unicast) or 129 (VPN multicast-UMH determination): NLRI specifies RD+prefix
 - GTM: SAFI 1 (unicast), 2 (multicast RPF-determination), or 4 (labeled unicast): NLRI specifies prefix but no RD
 - For MVPN UMH-eligible routes required to carry *VRF Route Import* and *Source AS EC*
 - To do GTM like MVPN, GTM UMH-eligible routes should have same requirement – but we will discuss a few scenarios where these can be omitted (at some compromise to the overall goals)
 - **“MCAST Routes”**: used for disseminating multicast routing information, for assigning multicast flow to tunnels, and sometimes for joining and leaving tunnels (BGP C-multicast routes and BGP A-D routes)
 - SAFI 5, for both GTM and MVPN
Use of Route Targets

- **GTM requires**, like MVPN, IP-address-specific RTs on the MCAST C-multicast Join routes and the MCAST Leaf A-D routes.
 - These routes are always “targeted” to a single router
 - That router is identified by the RT
 - BGP may distribute those routes to other routers -- the RT is the only way a router knows whether it is the “target” of a Join router or a Leaf A-D route
 - The RT also identifies the “target” VRF, for GTM that’s always VRF zero.
- Do other MCAST routes need RTs?
 - Yes, if you don’t want every GTM route to be distributed to every PBR
 - Useful to configure global tables with import/export RTs (like VRFs), so that MCAST route distribution can be constrained (with same tools used for constraining distribution of MVPN routes)
Finding the “Upstream PBR”

- Standard method (from MVPN specs):
 - UMH-eligible route matching a multicast source/RP carries VRF Route Import EC and Source AS EC
 - VRF Route Import EC identifies “upstream PBR” (ingress PBR) for flows from that source/RP (remember: upstream PBR not necessarily the next hop)
 - This info is used for targeting Joins and Leaf A-D routes
 - Source AS needed for multi-AS procedures
 - For MVPN, “upstream RD” is also inferred from this EC,

- Same exact procedure will work for GTM
 - Of course, RD is always zero

- But – whereas MVPN UMH-eligible routes are always originated into BGP by ingress PE, and distributed by BGP to egress PEs, that’s not always the case in GTM
 - Non-VPN UMH-eligible routes may not be originated by ingress PBR and/or distributed by BGP
Alternative Methods of Finding the “Upstream PBR”

• If UMH-eligible routes are not already BGP-distributed:
 • Have ingress PBR redistribute routes into BGP as SAFI-2, attach MVPN ECs
 • Multicast works “normally”, unicast routing not impacted, no other special procedures needed
 • If backbone is fully meshed with TE tunnels,
 • When egress PBR looks up route to source/RP, next hop interface will be TE tunnel
 • Select as ingress PBR the remote endpoint of that tunnel
 • Assume ingress PE in same AS as egress PE
 • Applicability restrictions
 • May be other deployment and/or implementation-specific methods that can be used, such as consulting IGP database
 • anything that works is allowed optionally, but beware interop problems
Another Alternative Method for Determining the “Upstream PBR”

• Next Hop
 • If:
 • every UMH-eligible route is originated by its ingress PBR, and
 • the ingress PBR puts itself as the next hop, and
 • the next hop never changes while the route is being distributed,
 • Then:
 • the ingress PBR can be determined from the next hop.

• Only works if the BGP speakers distributing the UMH-eligible routes never do “next hop self”, e.g., if routes distributed by “Service Route Reflector”
One More Alternative Method for Determining the “Upstream PBR”

- **Scenario:**
 - Source (S)---Attachment Router (AR)---I-PBR--- …. ---E-PBR
 - S is multicast source, AR is BGP speaker that without BGP MCAST support
 - AR talks PIM to I-PBR
 - AR distributes route to S, but doesn’t attach MVPN extended communities (doesn’t know about them)
 - The BGP-distributed route to S has AR as the next hop

- **Finding the Upstream PBR by Recursive NH Resolution**
 - I-PBR distributes in BGP a route to AR, with I-PBR as NH
 - I-PBR attaches VRF Route Import and Source AS ECs to those routes
 - When E-PBR looks up route to S:
 - it finds AR as the next hop
 - then it looks up route to AR, and finds I-PBR as the next hop
 - the route to AR has a VRF Route Import EC, so E-PBR knows that I-PBR is the upstream PBR for flows from S
Next Steps

• Requesting adoption in L3VPN WG
• Calling for review/comments in PIM/Mboned WGs