Contents

- Introduction
- Current Status of Autonomic Behaviors
- Current Non-Autonomic Behaviors
- Approach toward Autonomy
Introduction

• Goals and definitions are from draft-irtf-nmrg-autonomic-network-definitions.
 – self-configuration
 – self-optimization
 – self-healing
 – self-protection
 – eliminate tedious and error-prone tasks

• This draft aims to identify status of autonomic behaviors and outline what is missing.
Status: Address management

• Address assignment is automated by SLAAC or DHCP[v6] (central policy via DHCP state).
 – But still widespread static addressing for servers

• DHCPv6 Prefix Delegation [RFC3633]
 – But still open issues in this (and nothing for IPv4)
 • (see pfister-homenet-prefix-assignment for a homenet approach to this)
Status: DNS

• DNS coordinated with addressing via central IP Address Management tools
 – Dynamic DNS Update is available too

• DNS server address provided by
 – DHCP[v6], which must be configured accordingly
 – RA option, which must also be configured in router
 (see mglt-homenet-front-end-naming-delegation and mglt-homenet-naming-architecture-dhc-options for a homenet approach to autonomic (m)DNS)
Status: Routing

• Routing and forwarding table computation is autonomic
 – routers need some initial configuration data to start up the autonomic routing protocol.
 • (see HNCP draft for a homenet approach to this)
 – BGP-4 routers need static configuration of routing policy data.
Status: Configuration of Default Router

- **IPv4:** Automatic with DHCP
 - but DHCP server must be configured consistently with routing setup

- **IPv6:** Automatic with RA
 - more complex Route Information Options also available but not supported by all O/S
 - IPv6 routing information via DHCPv6 is controversial; so is extending the role of RA
 - open issues when more than one prefix is in use on a subnet
Status: Security & AAA

- Many configured attributes are candidates for autonomic approach
 - management of user authentication information remains manual by network administrators
 - but it is essential that a network's central policy should be applied strictly for all security configuration

- Many security mechanisms show some autonomic properties, e.g.
 - PPP, RADIUS and Diameter automatically configure & account
 - negotiating crypto algorithms

but central configuration of policy remains.
Non-autonomic behaviors (1)

- Network establishment:
 - analyze the requirements of the new network
 - design network architecture and topology
 - decide device locations and capacities
 - etc. etc.
 - part of these jobs may be able to become autonomic
 - initial network management policies/behaviors might be transplanted from other networks and automatically localized
 - but this goal is difficult
Non-autonomic behaviors (2)

• Network Maintenance & Management:
 – New requirements of network services may not be able to be met quickly by human management.
 – Today, configuration of new devices depends either on human intelligence or rigid templates. This is the source of most network configuration errors.
 – Configuration updates after installing (or removing) devices are a prime candidate for autonomic techniques.
 – Self-adapting network configuration would adjust the network into the best possible situation, which also prevents configuration errors from having lasting impact.
Non-autonomic behaviors (3)

• Troubleshooting and Recovery:
 – Associating warnings from multiple devices, together with automated learning techniques, could allow autonomic network diagnosis and troubleshooting.
 – Autonomic network management behavior may help reduce the impact of errors.
 – Software failures and configuration errors could be corrected autonomically.
Approach to autonomy: what’s missing?

• More Coordination among Devices or Network Partitions
 – Exchange knowledge between components
 – Horizontal as well as vertical information exchange
 – Detect and correct inconsistencies where they arise

• Don’t rely on a superior intelligence except for general policy intent.
 – Do not wait for instructions before correcting or improving configuration.
Also Missing Today: Benefit from Knowledge

- Historic knowledge is very helpful for correct decisions, in particular to reduce network oscillation or to manage resources over time.
- Transplantable knowledge from other networks can be helpful to initially set up a new network or new devices.
- Knowledge of relationship between network events and configuration may help network to decide according to real-time feedback.
- All these aspects today depend on humans rather than software applying the knowledge.
Questions? Discussion?

Thanks!