EXPERIMENTS WITH BROADCAST WITH NETWORK CODING

IETF/IRTF 89 LONDON Cedric Adjih, Ichrak Amdouni, Hana Baccouch, Antonia Maria Masucci (Inria)

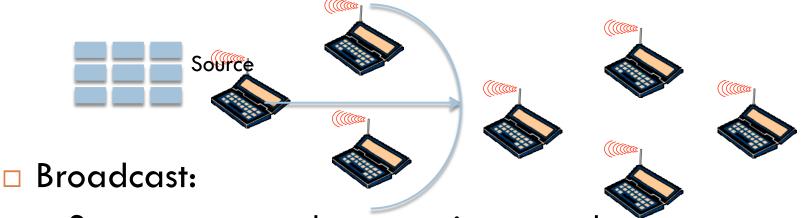
IPR Statement

□ No IPR from our side

From IPR disclosures at IETF, some to look for:

IETF IPR Disclosure	Patent	This presentation
ID #2183	"Randomized distributed network coding", US 7706365	Random linear [re]coding (slide 5, and following)
ID #2183	"Feedback-based online network coding", US 8068426	Possibly: feedback for stopping transmitting decoded packets (slide 5, 8, and following)

Objective: evaluation of NC


Q: What benefits can NC bring ?

(funding from French MoD, project ANR-ASTRID/GETRF)

Steps for evaluation:

- Focus on a realistic application
- Propose a reasonable protocol
- Evaluate it on real testbed (work in progress)
- Performance metrics:
 - Performance (number of transmissions, ...)
 - Complexity/simplicity of protocol design, and implementation

Chosen application: broadcast

Source: many packets to entire network

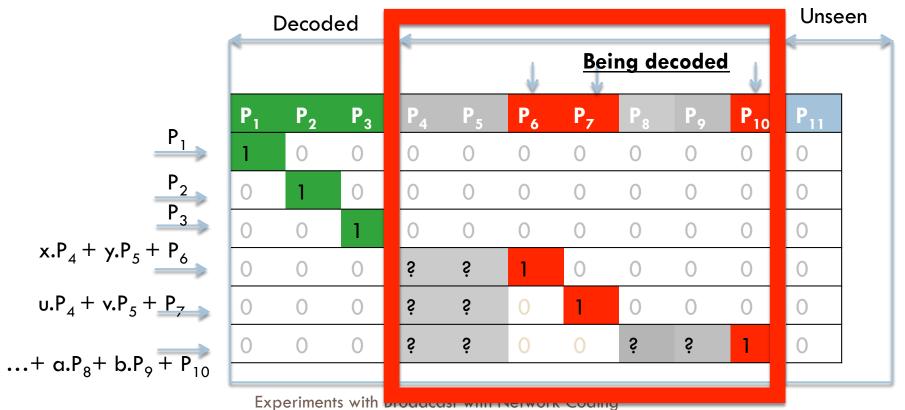
- Broadcast in Wireless Sensor Networks:
 - Widely deployed wireless multi-hop networks
 - Actual use case: "OTA" (over-the-air programming)
- Advantages of NC: efficiency, natural robustness, simplified control plane

Chosen protocol

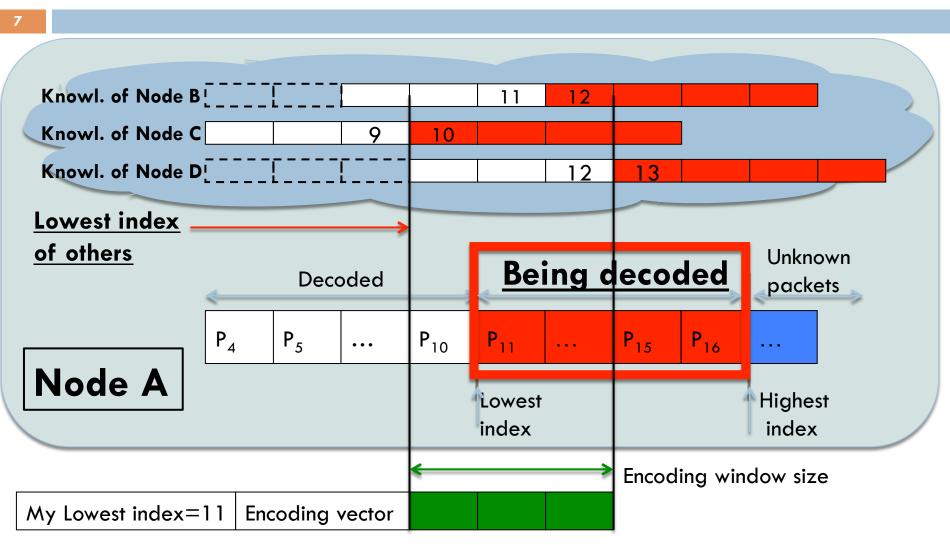
Broadcast Protocol:

- Based on protocol DRAGONCAST (draft-adjih-dragoncast-00.txt)
- Cho, S-Y. and C. Adjih, "Wireless Broadcast with Network Coding: DRAGONCAST", Inria RR-6569, July 2008
- Coded payloads are maintained in a decoding set

With Gaussian elimination (but "inverted" RREF)


- Every node retransmits coded payloads at a given packet rate per second: with random linear coding
- State of the each node is piggybacked
 - Rank, low index (=decoded payloads), number of neighbors
- Sliding Encoding Window (SEW)
- Dynamic Rate Adjustment (not implemented yet)

SEW: Sliding Encoding Window


Principle: "real-time" robust decoding

6

Variant of Gaussian elimination ("inverted" RREF)

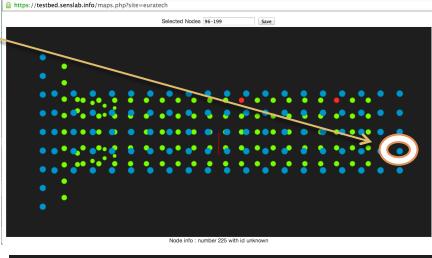
SEW: knowledge of neighbor state

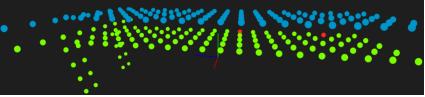
Experiments with Broadcast with Network Coding

Experimental settings

Implementation on sensor nodes: MSP430, 16 bits, 8 MHz 48 kB Flash, 10 kB RAM Radio 802.15.4 (CC2420) Used testbed with 200+ nodes Site of Inria Lille (Euratech) Part of a federation of large scale, open, testbeds: IoT-Lab/Senslab (FIT)

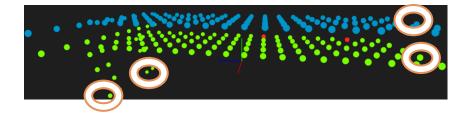
<u>http://senslab.info/</u>

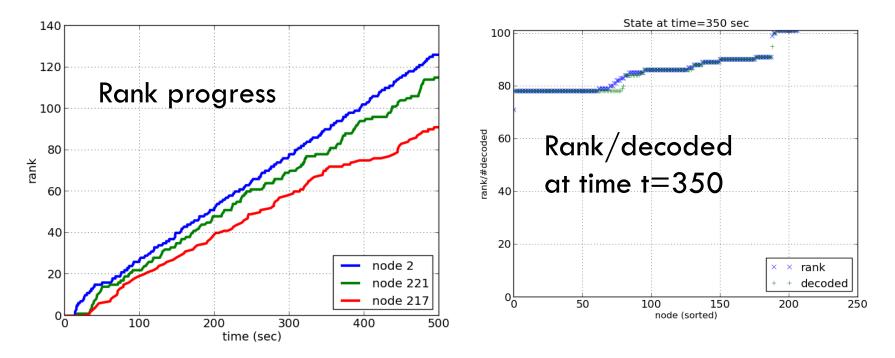



Experiment parameters

- 219 nodes
- Lowest power (-25 dBm)
- NC Parameters:
 - □ GF(4)
 - Coding window=15
 - Gaussian elim. win.=64 (regen. decoded packets)
 - Source, interval = 2 sec
 - Node, interval = 4 sec
 - Test: payload = 8 bytes (but on radio, 60+ bytes)

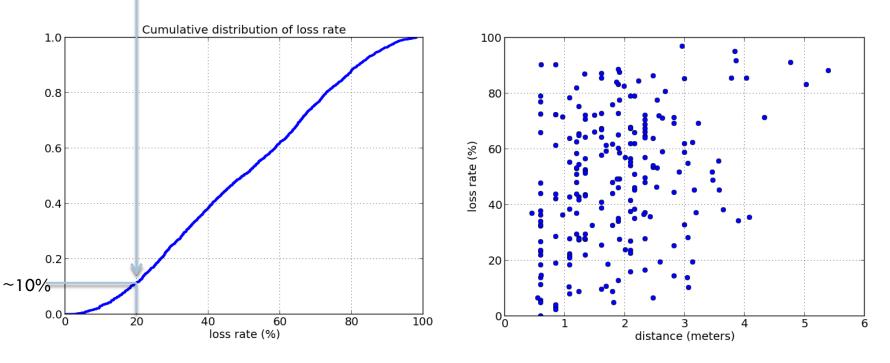
Experiments with Broadcast with Network Coding


source



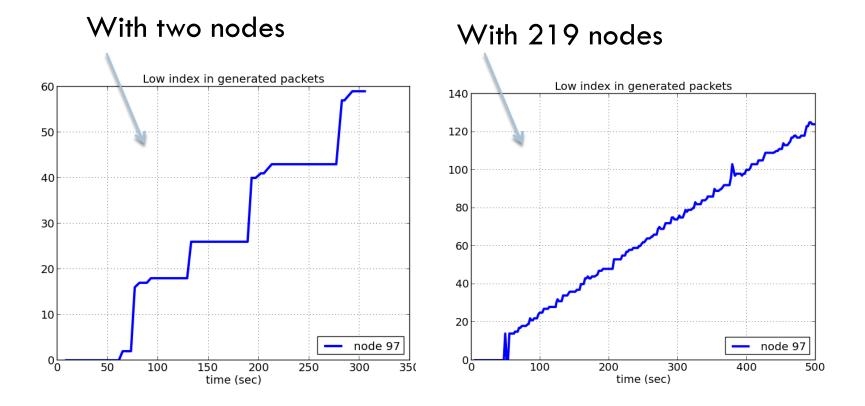
NC broadcast progress (rank)

Good progressRelies on SEW



High loss rate

11

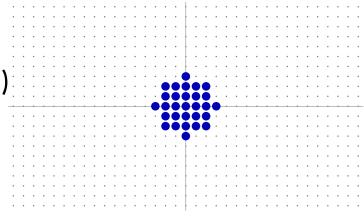

NC is performing well despite high loss rate ~10% of the "links" have less than 20% loss rate

SEW, window sliding strategy

12

Simple feedback of SEW is fine in multipath context

Some lessons


- Operates well even with high loss rate
- Complexity still present in neighbor state:
 - RAM: neigh. state (4608 bytes) vs packet set (3344 bytes)
 - Managing expiration (timers)
 - Packet loss = feedback loss
- Difficulties:
 - Sliding windows with limited "backlog"

Ongoing efforts

Questions: <u>Right packet rate for every node ?</u> <u>Efficiency ? Coding nodes ?</u>

Elements of answer (and benchmark):

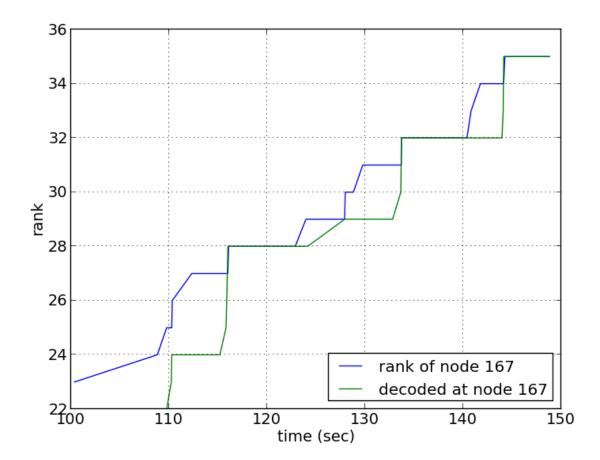
- Antonia Maria Masucci, C.A. « Efficiency of Broadcast with Network Coding in Wireless Networks », Inria RR-8490, Feb. 2014
- Perfectly regular network
 - (remove problems on side: torus)
- Rate=1, Source=#neigh (28)
- "Nearly" every transmission is innovative

Conclusion

- Demonstrated NC broadcast
 - On most constrained hardware
 - High loss conditions
- Interest of the RG for:
 - This type of application ?
 - Broadcast (e.g. many nodes)
 - This type of architecture/ building blocks ?
 - Sliding windows
 - Neighbors state feedback
 - (Packet rate adaptation)

THANK YOU

SEW: Sliding Encoding Window


Example

2 2 2 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '\x07\x07\x07\x07\x07 з 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '\r\r\r\r' 1 2 3 3 0 '\x14\x14\x14\x14 -3 0 0 0 0 0 0 0 0 0 0 0 0 '\x13\x13\x13\x13\x13 0 0 0 0 0 '\x10\x10\x10\x10\x10 2 1 0 0 0 0 0 0 Ω 0 0 2 0 3 0 0 2 0 2 3 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 '\x19\x19\x19\x19\x19 1 2 3 3 2 1 2 0 2 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 '\x16\x16\x16\x16' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 '\x10\x10\x10\x10 2 1 0 3 0 3 0 2 3 1 3 0 0 0 0

Implementation

- RAM for dragoncast = 7978 bytes
 - RAM for dragon = 4608 bytes
 - RAM for packet_set = 3344 bytes
- □ Code for MSP430: 20430 bytes

Rank vs decoded (window)

Experiments with Broadcast with Network Coding