BATS: An efficient network coding solution for packet loss networks

Raymond W. Yeung

Institute of Network Coding The Chinese University of Hong Kong

March 6, 2014 Presented at the IRTF Network Coding Research Group

Joint work with Shenghao Yang (IIIS, Tsinghua U)

Patents Related to BATS code

- 1 US patent pending (US Patent App. 13/112,589)
- PCT application in China and some European countries

Both links have a packet loss rate 0.2. The capacity of this network is 0.8.

Intermediate	End-to-End	Maximum Rate		
forwarding	retransmission	0.64		
forwarding	fountain codes	0.64		

Both links have a packet loss rate 0.2. The capacity of this network is 0.8.

Intermediate	End-to-End	Maximum Rate
forwarding	retransmission	0.64
forwarding	fountain codes	0.64
network coding	random linear codes	0.8

Achievable Rates: *n* hops

All links have a packet loss rate 0.2.

	Intermediate Operation	Maximum Rate	
-	forwarding	$0.8^n \rightarrow 0, \ n \rightarrow \infty$	
	network coding	0.8	

Complexity of Linear Network Coding

- T: length of a packet; K: number of packets
- Encoding: $\mathcal{O}(TK)$ per packet.
- Decoding: $\mathcal{O}(K^2 + TK)$ per packet.
- Network coding: $\mathcal{O}(TK)$ per packet. Buffer K packets.

Batched Sparse (BATS) Codes

[YY11] S. Yang and R. W. Yeung. Coding for a network coded fountain. ISIT 2011, Saint Petersburg, Russia, 2011.

Encoding of BATS Code: Outer Code

- Apply a "matrix fountain code" at the source node:
 - **1** Obtain a degree d by sampling a degree distribution Ψ .
 - Pick d distinct input packets randomly.
 - **③** Generate a batch of *M* coded packets using the *d* packets.
- Transmit the batches sequentially.

 $\mathbf{X}_i = \begin{bmatrix} b_{i1} & b_{i2} & \cdots & b_{id_i} \end{bmatrix} \mathbf{G}_i = \mathbf{B}_i \mathbf{G}_i.$

- The batches traverse the network.
- Encoding at the intermediate nodes forms the inner code.
- Linear network coding is applied in a causal manner within a batch.

Belief Propagation Decoding

- Find a check node *i* with degree_{*i*} = rank($\mathbf{G}_i \mathbf{H}_i$).
- 2 Decode the *i*th batch.
- Opdate the decoding graph. Repeat 1).

The linear equation associated with a check node: $\mathbf{Y}_i = \mathbf{B}_i \mathbf{G}_i \mathbf{H}_i$.

Precoding

- Precoding by a fixed-rate erasure correction code.
- The BATS code recovers (1η) of its input packets.

[Shokr06] A. Shokrollahi, Raptor codes, IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 25512567, Jun. 2006.

Source node	encoding	$\mathcal{O}(TM)$ per packet	
Destination node decoding		$\mathcal{O}(M^2 + TM)$ per packet	
Intermediate Node	buffer	$\mathcal{O}(TM)$	
	network coding	$\mathcal{O}(TM)$ per packet	

- T: length of a packet
- K: number of packets
- M: batch size

BATS codes with M = 32 and q = 256.

ĸ	coding overhead		inactivation no.			
Λ	average	max	min	average	max	min
1600	2.04	16	0	94.0	119	72
8000	6.30	77	0	215.5	268	179
16000	26.58	1089	0	352.2	379	302

- M = 1: BATS codes degenerate to Raptor codes.
 - Low complexity
 - No benefit of network coding
- M = K and degree $\equiv K$: BATS codes becomes RLNC.
 - High complexity
 - Full benefit of network coding.
- Exist parameters with moderate values that give very good performance

- Packet loss rate 0.2.
- Node *s* encodes *K* packets using a BATS code.
- Node *u* caches only one batch.
- Node *t* sends one feedback after decoding.

Experiment setting

Experiment setting

- Sender/receiver: a laptop with open source Atheros wireless drivers.
- Relay: one wireless router with Atheros chipset running OpenWrt (about 150HKD/20USD)
- WiFi 802.11 b/g/n at 2.4GHz
- Sender's rate is set to 1 Mb/s to reduce the effect of the router's low computation power.

	Average rate (Kb/s)
BATS w/ recoding	592.86
BATS w/o recoding	530.65
TCP (normal 802.11)	420.33

Application: vehicular ad-hoc network

Application: mobile ad-hoc network

- BATS codes provide a digital fountain solution with linear network coding:
 - Outer code at the source node is a matrix fountain code.
 - Linear network coding at the intermediate nodes forms the inner code.
 - Prevents BOTH packet loss and delay from accumulating along the way.
- The more hops between the source node and the sink node, the larger the benefit.