

UiO: University of Oslo

Progress on Practical Shared Bottleneck Detection for Coupled Congestion Control

David Hayes (UiO) { Simone Ferlin (SRL) and Michael Welzl (UiO) }

Background

Problem

- Flows traversing different paths through a network may share a common congested link — a bottleneck
- Detecting which flows share a bottleneck and coupling their congestion control can provide performance advantages.

SBD design objectives

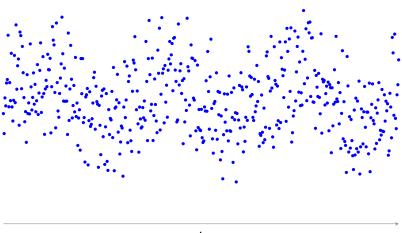
- Reliable
- Practical (not CPU nor network intensive)
- ► Small numbers of bottlenecks (< 10)
- ► Timely stable bottleneck detection (< 10 s)

Shared Bottleneck Detection

What does it rely on?

flows that share a bottleneck are similar in a measurable way

Why is it hard?

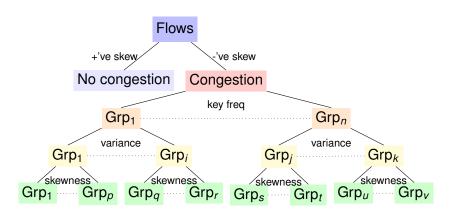

- delay and loss measurements include "noise" from rest of the path
- delay and loss at the bottleneck is noisy each packet sees a different queueing delay
- different path delays cause time correlations to be lost or degraded at the measurement point

Classic cross correlation techniques

Pairwise flow cross correlation of delay samples

- delay signal is noisy
 - filter
- delay distribution is often skewed
 - sophisticated filter
- different path delays
 - incrementally shift and cross correlate to find lag of maximum correlation.

The delay signal

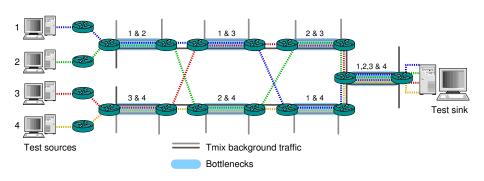

Dealing with the signal noise

- Remove half the noise from other links by using OWD instead of RTT
- Only using difference statistics
 - removes queueing delay estimate errors due to inaccurate estimate of OWD_{min}
- Mitigate lag and sample noise by:
 - relatively large statistic gathering periods
 - relax thresholds (no need to distinguish between 1000 bottlenecks)
 - use multiple measures

Summary statistics

- Skewness in OWD
 - an estimate using 2 counters
- Variance in OWD
 - estimated using PDV (RFC 5481)
- Key frequency of OWD at the bottleneck link
 - estimated based on significant mean crossings

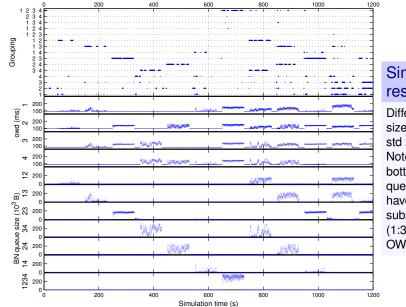
Grouping overview


Simulation tests

Objectives

- ► Test with a known "ground truth"
- Simulations can allow us to look at worse than real scenarios.

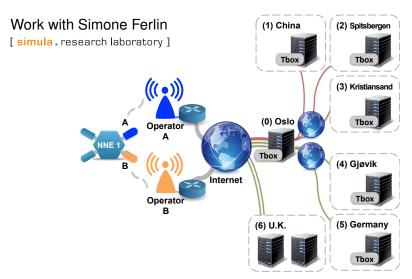
But, real network experiments are in progress will be discussed before the end.


Example NS2 Simulation

Notes on results

- ▶ Decisions made every 300 ms, but based on 6 15 s statistics.
- Decision "points" are large for legibility, but it can tend to magnify errors.
- Results illustrates what can and can't be done.

UiO: University of Oslo


Simulation results

Different queue sizes, link owd std 2.5.
Note bottleneck queue sizes have been subsampled (1:350) and OWDs (1:20)

Real network experiments

- Bottleneck "ground truth" cannot be known with 100 % certainty.
 - Find thinnest link using STAB
 - Load thinnest link with distant internet sources to create known bottleneck
- What are we testing?
 - ▶ Robustness in unpredictable "real" environments

Real network experiments (in progress)

Working with Coupled Congestion Control

- Summary statistics are gathered at the receivers
- Shared bottlenecks to a receiver
 - Receiver does grouping and sends information to senders
- Shared bottlenecks from a sender:
 - Receivers send summary statistics for grouping at sender.
- Can provide the necessary information for a future multi-sender multi-receiver coupled congestion control.

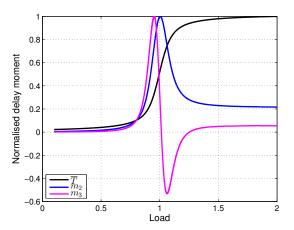
Conclusions and further work

Finalising this stage

- Finish real network experiments
- Paper submission soon (LCN)
- Draft (referring to paper)
- Quantitative results of % correct grouping
 - simulation based where "ground truth" is known
 - bottleneck definition based on queue empty rate or avg. queue size
 - extended version in journal

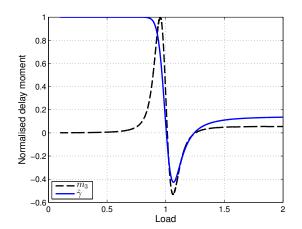
Next steps

- Protocol for sender/receiver information exchange
- Integration with coupled congestion control
 - time scales of detection
 - dealing with SBD errors
 - oscillating bottlenecks

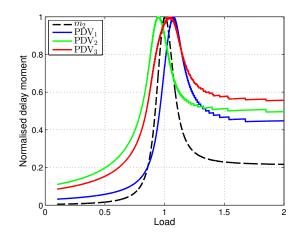


UiO: University of Oslo

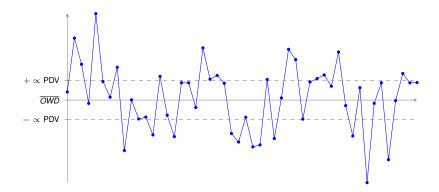
Extra slides



Time domain summary statistics



Mean, variance (m_2) , skewness (m_3)


Practical estimation of skewness

Practical estimation of variance

Practical estimation of key frequency \hat{f}

