# draft-litkowski-rtgwg-uloop-delay-03

Stephane Litkowski, Orange Bruno Decraene, Orange Clarence Filsfils, Cisco Systems Pierre Francois, IMDEA Networks Institute

IETF 89, RTGWG WG

### Diffs

- Motivation of the solution
- More precise definitions (local event, ...)
- More precise focus (link down and link up)
- Previous works

# Microloop prevention by introducing a local convergence delay

- Microloop
  - transient inconsistency among routers' FIB
  - during a convergence event
- Local convergence delay
  - Avoid inconsistencies
  - In the direct neighborhood of the node responsible of the convergence
  - by controlling when the node updates its FIB

#### Motivation

- Benefits of FRR is negated by microloops
  - if PLR directly goes into FIB update after FRR activation
- Similar issues when the link comes back up
- Microloops are bad:
  - Packet drops (TTL)
  - Link saturation
    (more drops, even for "unaffected" destinations)



### Link down

- Link down A→D, A does FRR using RLFA to C
- A
  - Floods LSP
  - Delays its FIB update
- Other nodes (B) update first



## Link up

- Link A-D comes back up
  - A floods LSP with largest metric (2 way CC)
  - A updates its FIB, (SPF using configured metric)
  - A floods LSP with configured metric
- A updates its FIB before other nodes (B)



## Uloop-delay, oFIB, and PLSN

#### oFIB

- Orders FIB update among all routers of the net
- Requires interoperability and full support
- uloop-delay is a subset:
  - only deal with local inconsistencies

#### PLSN

- Delays FIB update while transiently use loopfree neighbours
- uloop-delay is different:
  - Local only
  - Traffic does not transiently follow non shortest-paths

### Possible future items

- Metric reconfiguration (easy)
- Node event
- LAN's