Service Function Chaining in Mobile Networks

Status draft-haeffner-sfc-use-case-mobility

IETF 89 London, 3 March 2014 Service Function Chaining WG

Walter Haeffner - <u>walter.haeffner@vodafone.com</u>, Jeff Napper - <u>jenapper@cisco.com</u> Martin Stiemerling - <u>mls.ietf@gmail.com</u>, Diego R. Lopez - <u>diego@tid.es</u>

draft-haeffner-sfc-use-case-mobility acknowledgement

We thank Linda Dunbar

Ron Parker

Wim Hendericks

Alla Goldner

Dave Dolson

Peter Bosch

Praveen Muley

Carlos Correia, for valuable comments

1 – context

Mobile network operators need to implement a complex array of single- (or few-) function devices (a.k.a. SFC) to control data traffic such that they can achieve their business goals.

protect network & privacy – FW, IDS, ACL, ...
optimize transport & payload – TCP Opt., Video Opt., ...
functions required for technical reasons – GC-NAT, DPI, LB, ...
merge signaling information into data flow - HTTP header enrichment, ...
network-based value added services – parental control, malware protection, ...

2 - objectives

- Understand importance of Service Function Chaining for mobile network operators - Influence to their business
- □ Discuss Service Function Chains (SFC) in the context of mobile network architectures – exemplary state of the art use cases
- Work out potential weaknesses in current environments and derive operator requirements to support SFC WG objectives
- ☐ Compare with activities of other standard bodies, especially clarify interaction between 3GPP and IETF SFC approach
- ☐ A possible dream SFC environment from an operator's point of view based on NFV, SDN, reflecting abstraction levels

3 – status draft

Draft-00 issued 29 Jan. 2014	
	Service chains supplement 3GPP policy and charging control architecture
	PCC and SFCs play a significant role in mobile service specifications
	SFCs often a sequence of "little" proprietary SFC implementations
	Therefore typically a hierarchy of inspections & classifications in place
	Discussed simple classification and flow steering schemes
	Sketched use case "video optimization" (L7) and "TCP optimization" (L4)
	Discussed weakness of current solutions and requirements to SFC WGs
Draft-01 issued 14 Feb. 2014	
	Added 3GPP R11 Traffic Detection Function (TDF) [3GPP TS.23.203]
	Allows for fine grained classification schemes and feedback to PCC

draft-haeffner-sfc-use-case-mobility 3 – status draft - basics of a video optimization SFC

Functional view of a model video optimizer SFC

Draft-00 & draft-01 shows flow steering based on HTTP redirections

4 – outlook draft-02 to be published end of March

Discuss impact of re-classification and chains of value added services.

draft-haeffner-sfc-use-case-mobility 5 – outlook draft-02 to be published end of March

Grown multi-vendor structures may become very complex, inefficient, hard to understand and hard to manage

5 – Weaknesses and Requirements

Weaknesses in current deployments

☐ Per APN service chaining, in almost any case classification too coarse grained ☐ Means traffic often unnecessarily traverses a service function, no offloading ☐ Often ad hoc sequence of individual mini-chains, each with its own classification ☐ Results in multiple, individual DPI inspection systems, multiple LB batteries ☐ Is expensive, complex, inflexible, hard to modify/extend with reduced performance Possible solutions ☐ Mobile network MUST exchange context with the IETF SFC classifier function ☐ SFC classifier MUST tag packets such that these enter only the SFs required ☐ Means bi- and unidirectional flows MUST be allowed ☐ Individual SFs MUST participate in multiple, different SFCs Creation/modification of SFCs including their branching rules SHOULD be done in a simple to use SFC editor. Mapping onto the underlay MUST then be automatic.

draft-haeffner-sfc-use-case-mobility 6 – IETF SFC interactions with 3GPP PCC architecture

How to exchange 3GPP user & control plane metadata with IETF SFC?

BBERF: Bearer Binding and Event Reporting Function

draft-haeffner-sfc-use-case-mobility 7 – outlook draft-IETF 90

Listed all use case classes required to verify universality of SFC WG architecture and design paradigms for mobile. Isolate input to requirements and functional specifications. ☐ SFCs for fixed networks (xDSL, Cable) are typically a subset of what is seen in mobile. List synergies w.r.t. FMC scenarios. Analyse requirements for the interaction between the 3GPP and the IETF SFC classification schemes. Initiate a discussion to clarify how to proceed in case of encrypted traffic (IETF 88 resolution).