

Towards
Transport-Agnostic

Middleware
Martin Sústrik

sustrik@250bpm.com
www.250bpm.com

Messaging Middleware
A layer in the network stack
to manage communication

between more than two endpoints.

ZeroMQ/nanomsg
1 minute overview

● Request/Reply
● Publish/Subscribe
● Pipeline
● Survey
● Et c.

As a layer in the network stack
it implements multiple protocols,
a.k.a. “messaging patterns”.

Publish/Subscribe
Distributing data to all interested endpoints

Request/Reply
Load-balancing tasks among stateless workers

What about the transport layer?

It's heterogenous!

int main()
{
 int s = nn_socket (AF_SP, NN_PUB);

 nn_bind (s, “tcp://eth0:5555”);
 nn_bind (s, “pgm://eth0;241.0.0.1:5555”);

 while (1) {
 nn_send (s, “ABC”, 3, 0);
 sleep (1);
 }
}

int main()
{
 int s = nn_socket (AF_SP, NN_SUB);

 nn_connect (s, “tcp://myserver:5555”);

 while (1) {
 char buf [100];
 nn_recv (s, buf, sizeof (buf), 0);
 }
}

Publisher

Subscriber

Code example

Why should this group care?

Because it's hard for the application
developer to make informed decision

about transport protocol to use:

● Reliable or unreliable?
● Unicast of multicast?
● Ordered or unordered?
● Pushback or no pushback?
● Widely used (TCP, UDP) or niche (SCTP)?
● Et c.

Often, informed decision can't even be
made at the development time:

● Developer has little understanding of
customer's deployment environment...

● Application is sold to different customers,
each having different network...

● Environment is going to change in the
future...

Yet, by choosing a “messaging pattern”,
developer provides enough information

to make an informed decision about
transport protocols to use!

Example

Publish/Subcribe pattern requires transport layer not to be reliable.
Reliability would mean that a single slow or dead subscriber can

stop the entire distribution tree.

Preferred transport protocol is UDP or DCCP.

Different example

Request/Reply pattern requires transport layer to exercise
pushback. That way the tasks can be redirected from

overloaded workers to underutilised workers.

Preferred transport protocol is TCP or SCTP.

What are the implications?

Back to the heterogenous example:

int main()
{
 int s = nn_socket (AF_SP, NN_PUB);

 nn_bind (s, “eth0:NYSE-stock-quotes”);

 while (1) {
 nn_send (s, “ABC”, 3, 0);
 sleep (1);
 }
}

int main()
{
 int s = nn_socket (AF_SP, NN_SUB);

 nn_connect (s, “myserver:NYSE-stock-quotes”);

 while (1) {
 char buf [100];
 nn_recv (s, buf, sizeof (buf), 0);
 }
}

Publisher

Subscriber

No need to specify the transport protocol:

What we get is clean
mechanism vs. policy

separation!

int main()
{
 int s = nn_socket (AF_SP, NN_PUB);

 nn_bind (s, “eth0:NYSE-stock-quotes”);

 while (1) {
 nn_send (s, “ABC”, 3, 0);
 sleep (1);
 }
}

Developer specifies the mechanism:
“NYSE stock quote feed is to use
the Publish/Subscribe pattern.”

Mechanism is specified via
transport-agnostic API.

NYSE-stock-quotes:
 LAN: pgm
 WAN: tcp

Administrator specifies the policy:
“NYSE stock quote feed is to use

PGM on the LAN and TCP over the WAN.”

Policy is specified via transport-aware
network configuration tools.

Questions?
Email: sustrik@250bpm.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

