
TLS 1.3

Eric Rescorla

ekr@rtfm.com

IETF 89 TLS 1.3 1



Reminder: Objectives

• Encrypt as much of the handshake as possible

• Reduce handshake latency, with a target of 0-RTT for repeated

handshakes and 1-RTT for “full” handshakes

• Reevaluate handshake contents

• Reevaluate record protection mechanisms (not discussed here)

IETF 89 TLS 1.3 2



New Handshake Flows

• Almost nothing here is new

• Ideas cribbed from

– False Start

– Snap Start

– NPN

– Marsh Ray’s encrypted handshake draft

– A bunch of other people

• Writeup in: draft-rescorla-tls13-new-flows-01

IETF 89 TLS 1.3 3



Basic Assumptions

• No more static RSA

– RSA certificates still allowed (duh)

– But only for DHE

• Encrypt extensions

– But generally this protects only against passive attack

– The issue here is encrypting SNI (more later)

• Only handle the “full” handshake

– Open issue if we want to do resumption

IETF 89 TLS 1.3 4



Basic Mode: 1RTT Handshake

(assumes knowledge of server key)

ClientHello

+ PredictedParameters

ClientKeyExchange

[ChangeCipherSpec]

{EncryptedExtensions} --------->

ServerHello

ServerKeyExchange

[ChangeCipherSpec]

{EncryptedExtensions}

{Certificate*}

{CertificateRequest*}

{ServerParameters*}

{CertificateVerify*}

<--------- {Finished}

{[ChangeCipherSpec]}

{Certificate*}

{CertificateVerify*}

{Finished} --------->

<--------- {Finished ???} // Probably not needed

IETF 89 TLS 1.3 5



What does this provide?

• 1RTT handshake

• Privacy for the extensions (from passive attackers)

• Privacy for the client identity (from active attackers)

• Requires client-side knowledge of server parameters

• PFS for all the application data

– ClientHello doesn’t get PFS (though server can use short-lived

ServerParams)

IETF 89 TLS 1.3 6



How does the client learn server parameters?

• Previous handshake (in ServerParameters message)

• Some other kind of advertisement

– DNS (a la DANE)

– Out-of-band signaling (e.g., SDP for DTLS-SRTP)

IETF 89 TLS 1.3 7



Variant 1: Naive client

ClientHello -------->

ServerHello

ServerKeyExchange

<-------- ServerHelloDone

...

• Client solicits the server’s parameters

• Server provides them

• Then you fall back to basic handshake

• This is also what happens if the client has the wrong parameters

• Client and server can use this to force PFS for the ClientHello

IETF 89 TLS 1.3 8



Intermission: Protecting server identity?

• Much of the complexity here comes from protecting SNI (and the

server cert)

• If we don’t protect SNI, life becomes much easier...

IETF 89 TLS 1.3 9



What we get if we decide not to protect SNI

ClientHello

+ ClientKeyExchange --------->

ServerHello

[ChangeCipherSpec]

{EncryptedServerHello}

{Certificate*}

{CertificateRequest*}

{ServerParameters*}

{CertificateVerify*}

<--------- {Finished}

[ChangeCipherSpec]

{Certificate*}

{CertificateVerify*}

{Finished} --------->

<--------- {Finished ???}

IETF 89 TLS 1.3 10



Discussion Question: Should we protect SNI?

• Arguments for

– Privacy

– Pervasive monitoring

• Arguments against

– Protocol complexity

– Extra CPU

– We are only getting passive protection

∗ Though maybe we could get tweak ServerParameters to get

security against active attack

• Discuss

IETF 89 TLS 1.3 11



Variant 2: 0-RTT Handshakes

ClientHello

+ PredictedParameters

ClientKeyExchange

[ChangeCipherSpec]

{EncryptedExtensions

+ AntiReplayToken}

{Certificate*}

{CertificateVerify*}

{Finished}

{ApplicationData} --------->

ServerHello

ServerKeyExchange

[ChangeCipherSpec]

{EncryptedExtensions

+ AntiReplayToken}

{Certificate*}

{ServerParameters*}

{CertificateVerify*}

<--------- {Finished}

{[ChangeCipherSpec]}

{Finished???} ---------> // Probably not needed

IETF 89 TLS 1.3 12



Unpacking 0-RTT

• Ordinarily, TLS uses nonces to provide anti-replay

– The client always sends a nonce

– In a 0-RTT handshake the server does not send one

• Alternative anti-replay approach

– Server memorizes every client nonce and rejects replays

– Use timestamps to minimize the amount of server storage

– Client needs to fall back to a full handshake if the server has

lost state

• This is a lot of work for the server

– Needs to be opt-in from the server side

• Note: no PFS for the client’s first flight!

IETF 89 TLS 1.3 13



Why 0-RTT?

• Milliseconds are moneyattention

• Really nice to be able to send data in first message (c.f. TFO,

HTTP data in SYN)

• Issue for

– Some big Web sites

– DTLS-SRTP for WebRTC

– Maybe DNS-E

• Needs to be opt-in (see above) but still means protocol complexity

IETF 89 TLS 1.3 14



Double checking that we can stop supporting RSA?

• Obviously suboptimal performance characteristics

• Complexity

– Doesn’t match the PFS pattern

– See the handshakes above

• But everyone uses it...

– And they have RSA certificates

– Discuss.

IETF 89 TLS 1.3 15



Should we remove renegotation?

• Raised by a number of people on the list

• Arguments for

– Obvious point of complexity

– We’ve had problems here before

• Arguments against

– Change parameters

– PFS refresh/rekey

– To prevent cipher exhaustion (other ways to fix this)

– Are we breaking people’s actual applications

• Discuss.

IETF 89 TLS 1.3 16



Should we remove resumption?

• Servers have gotten a lot faster

– As have our cipher suites

• Arguments for

– Remove complexity

• Arguments against

– People definitely use it

– And not everyone has gone to EC

– Some devices have gotten much slower (DICE)

• Discuss.

IETF 89 TLS 1.3 17



Remove Compression

• We don’t really know how to do this securely

• The current advice is not to use it anyway

• Shal we just remove it?

IETF 89 TLS 1.3 18



Symmetric Cipher DeathMatch

• TLS specifies three types of ciphers

– Stream ciphers (none currently defined, incompatible with

DTLS)

– Block ciphers (basically CBC)

– AEAD ciphers (everything else)

• People are sad about CBC

• Can we just triage the cipher list to AEAD ciphers (GCM,

ChaCha/Poly1305, plus maybe a few more)?

IETF 89 TLS 1.3 19



Encrypt/MAC Order

• WG moving ahead with draft-gutmann

• No need to have this be an extension for 1.3

• If we retain CBC, let’s just change

IETF 89 TLS 1.3 20



Next Steps

• Dummy RFC 5246bis in submission shortly (thanks to PSA for

XML translation)

• Try to make some of these decisions and edit the document

accordingly

IETF 89 TLS 1.3 21


