IP mobility based solutions

draft-bernardos-dmm-cmip-01
draft-bernardos-dmm-pmip-03

Carlos J. Bernardos – Universidad Carlos III de Madrid
Antonio de la Oliva – Universidad Carlos III de Madrid
Fabio Giust – Institute IMDEA Networks & Universidad Carlos III de Madrid

Toronto, DMM WG, 2014-07-24
Where are we in the DMM ocean?

- Too many ways of categorize our solutions
 - IP mobility based solutions
 - Re-use (P)MIPv6 signaling
 - Network-based and client-based
 - PMIPv6-based solution, no support required on the host
 - MIPv6-based solution, some support required on the host
 - Access network anchoring (Alper’s categorization)
 - Anchoring IP address within the access network using IP-in-IP tunneling
We extend existing IP mobility protocols

- Client Mobile IP (host) based
 - Fabio Giust, Antonio de la Oliva, Carlos J. Bernardos, “Flat Access and Mobility Architecture: an IPv6 Distributed Client Mobility Management Solution”, 3rd IEEE International Workshop on Mobility Management in the Networks of the Future World (Mobiworld 2011) at INFOCOM 11
 - draft-bernardos-dmm-cmip-01

- Proxy Mobile IP (network) based
 - draft-bernardos-dmm-pmip-03
Client-based DMM solution

- Flat Access and Mobility Architecture (FAMA)
- Re-uses existing approaches
 - Mobile IPv6: RFC 6275
 - Authorizing MIPv6 BU with CGAs: draft-laganier-mext-cga
- Mobility management pushed to the edge of the network
 - The HA is deployed at the access router level
Client-based solution.

Entities

- **Distributed Anchor Router (DAR)**
 - Deployed in the MN’s default gateway
 - First hop router
 - It assigns a topologically valid address to MNs
 - An on-link MN can send/receive traffic using the address from the DAR
 - DAR forwards such packets as a plain router
 - A DAR anchors the address it assigned when the MN is not on-link (HA role)
 - The MN’s address is reachable through a bi-directional IP tunnel
Client-based solution. Operations (I)

- When the MN moves to a new DAR, it can keep the old address reachability by notifying the corresponding DAR with a BU
Client-based solution. Operations (II)

- The address configured at the new DAR is used for new sessions
- Old sessions are redirected through the IP tunnel
Net-based DMM solution

• Network based DMM approach
 • Based on Proxy Mobile IPv6: RFC 5213
• Mobility management pushed to the edge
 • Access router level
• Partially distributed solution: C-U split
 • Centralized control plane kind-of LMA
 • A central node stores the mobility sessions of all the MNs
 • Distributed data plane
 • Only the edge routers handle the data forwarding
Net-based solution.

Entities

• **Mobility Anchor and Access Router (MAAR)**
 - One IP hop distance from the MN
 - Concentrates AR, LMA and MAG functionalities on a per-MN, per-prefix basis
 - Delegates and anchors an IP prefix to each MN attached
 - Serving MAAR (S-MAAR): MAAR which the MN is currently attached to
 - Anchor MAAR (A-MAAR): previously visited MAAR anchoring a prefix used by an active flow of the MN
 - Forwards data packets to/from IP networks

• **Central Mobility Database (CMD)**
 - Central node storing the BCEs of all the MNs in the domain
 - It plays the role of the LMA for the control plane
 - Not traversed by data packets
Net-based solution.

Operations: initial registration

- The S-MAAR registers the MN at the CMD through a PBU/PBA handshake.
Net-based solution. Operations: handover

• 3 operational modes:
 • CMD as PBU/PBA relay
 • CMD as MAAR locator
 • CMD as PBU/PBA proxy
• Conceptually they are similar
 • The difference mainly consists on the message order
• We focus on the “proxy” mode
 • Already implemented
Net-based solution.
CMD as PBU/PBA proxy

- The CMD receives a PBU from the new S-MAAR announcing the MN attachment

- The CMD sends instructions to the S-MAAR and A-MAAR(s) on how to establish the proper routing configuration
Analysis against DMM requirements

- Meet DMM requirements (draft-ietf-dmm-requirements)
 - REQ1: Distributed mobility management
 - REQ2: Bypassable network-layer mobility support for each application session
 - REQ3: IPv6 deployment
 - REQ4: Existing mobility protocols
 - REQ5: Coexistence with deployed networks/hosts and operability across different networks
 - REQ6: Operation and Management considerations
 - REQ7: Security considerations
 - REQ8: Multicast considerations
www.odmm.net

- **ODMM**: Open platform for **DMM** solutions
 - Web site, supporting docs & mailing lists
 - Released in January 2014
 - Platform hosting **Open Source DMM implementations**
 - Network-based DMM (MAD-PMIPv6), showcased in Paris and Berlin meetings
 - Client-based DMM implementation (C-DMM for MIPv6), recently added
 - Others?
 - Maintained and extended by the EU iJOIN project
- **News and announcements**
 - Subscribe to odmm@odmm.net
Questions?

KEEP CALM AND ASK ME QUESTIONS