Applicability and Tradeoffs of ICN for Efficient IoT

draft-lindgren-icnrg-efficientiot-00

presented by Olov Schelén

IRTF ICNRG
IETF 90, Toronto

Motivation and Objectives

- How to support efficient and scalable IoT over existing ICN proposals with small changes to the ICN concepts
- The sweet spot is where resource constrained IoT clients/devices have connectivity to resource rich ICN node(s)
 - IoT devices may have intermittent connectivity directly or indirectly to ICN node(s)
- In this draft we cover
 - Advantages and challenges with ICN for IoT in the above described context
 - Examples of design choices and trade-offs to allow for effective, efficient, scalable and secure handling of IoT data in an ICN network

ICN for IoT Advantages (A) and Challenges (C)

- Naming of data and services
 - A: in IoT, sensing and data acquisition is often the goal
 - C: to control/manage devices, to keep names short, to make names known or deducible
- Distributed caching
 - A: less transmissions with IoT devices to retrieve or send IoT data at multiple times and/or to multiple places, saves power and bandwidth, and reduces delay for retrieval
 - C: to handle very dynamic and heterogeneous content
- Decoupling between sender and receiver
 - A: IoT devices may have intermittent network connectivity
 - C: to provide security and real-time data

Design choices for IoT

where NO changes to ICN are needed

- ICN in concert with existing internet protocols
 - facilitating actuation and control of specific IoT devices
- One-phase direct naming of objects
 - addressable atomic data units with known/deducible names, no advanced "lookup" needed by ICN
- Immutable atomic data units
 - Eliminating cache inconsistencies, a trade-off is that dynamic data must be modeled as a stream of immutable data units
 - name of "latest" value must be deducible
- Capability / data property advertisements
 - Explains how data is structured and addressed (e.g. valid points in time)
 - Advertisements can be disseminated with ICN
- Object security
 - Handled by the IoT framework, no need to modify typical ICN standards

Design choices for IoT

where additions to ICN concepts would improve efficiency

- The importance of time
 - extensions to ICN naming to represent time (for IoT, live streaming video, etc.)
- Pull and push
 - push is efficient for real-time information, triggered information, alarms, etc
 - Supported by ICN or use other mechanisms (e.g., multicast)?
- Optional meta data
 - For efficiency reasons retrieving meta data (to/from resource constrained nodes) should be optional

Discussion

- Feedback
- Next steps