MPLS Architectural Principles

George Swallow (swallow@cisco.com)

MPLS Guiding Principles

- Co-existence with IP
- IP based Control Planes
- Reuse of IP protocols
- Extendable protocols
- Pragmatism

MPLS Architectural Principles

- Separation of Control Plane and Data Plane
- Label semantics (except reserved) belong to application
 Forwarding Equivalence Class
- Compact Header
- Multiple, Independent Control Planes
- Label Stack

Some contextual background

- Ratio of processor speeds to data-link speed much lower
- Cost of a bit orders of magnitude higher
- Getting links was very slow
- IP community did not like ATM and particularly the "cell tax"

Dataplane Requirements

- Very fast (i.e few gates and/or few cycles per packet)
- Very wide range of equipment
- Simple Data Plane
- Stable Data Plane

Needs to work for lifetime of equipment (>10 yrs) Including boxes for which

- New linecards cannot be cost justified
- Software has become "functionally stable"

MPLS Components

Control components

Applications directly define and manipulate label bindings

Essentially they use labels to program data plane

Forwarding component
 Simple label-swapping paradigm

Efficient label processing

Simple Forwarding Plane

Label Stack Entry

- Label determines simple forwarding operations
 Push, Pop, Swap, Outgoing interface(s)
- Class of Service + Label defines queuing, drop priority

Label Semantics

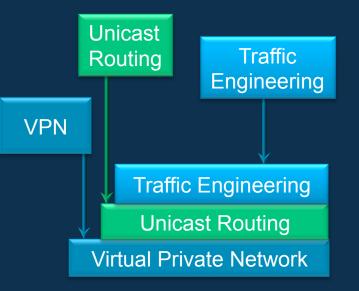
- Defined by the application
- Need only be known by LSRs that Push/Swap/Pop that label
- Full semantics need only be known to the consumer of the label
- Forwarding Equivalence Class

Simple powerful concept

Single label assigned to a set of packets that are to be treated identically

Note that CoS bits are not part of this definition

Label Space


- One Million Labels
- 16 Reserved Labels
 Intentionally a limited number
 New values impact dataplane
- Label Spaces per
 - \diamond LSR
 - ♦ Interface

Context Labels

- One label can define a new label space
- Powerful means of expanding the available labels
- If you need more labels, this is the proper way to do it!

Label Stack

- Arbitrary number of labels
- Multiple control planes act on packets
- Control planes are totally independent
- Control plane at one level can be replaced
 No impact on levels above or below

The single most important element in MPLS' success

"No idea is so bad that it won't be proposed over and over again"

Ideas proposed over and over

- Global Labels
- Source Labels
- Special encodings of labels
 Special meanings to label bits
- Special semantics for double labels
 - PoP top label; process next label; push PoP'ed label back on
 - 8 byte label stack entry
- Special uses for CoS and / or TTL bits
- Multiple EOS bits set in the label stack

Other rejected / abandoned ideas

- Encoding labels into VLAN-IDs
- Encoding labels into the IPv6 flow label
- Label Stack Header
- Labels in PIM
- I'm sure I've missed some